Oxidative addition to palladium(0) diphosphine complexes: observations of mechanistic complexity with iodobenzene as reactant.

Chemistry

Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA (UK); Kazan Federal University, Alexander Butlerov Institute of Chemistry, Kazan 420008 (Russia).

Published: January 2014

Using a combination of electrochemical and NMR techniques, the oxidative addition of PhX to three closely related bis-diphosphine P2Pd(0) complexes, where the steric bulk of just one substituent was varied, has been analysed quantitatively. For the complex derived from MetBu2P, a rapid reaction ensued with PhI following an associative mechanism, and data was also obtained by cyclic voltammetry for PhOTs, PhBr and PhCl, revealing distinct relative reactivities from the related (PCx3)2Pd complex (Cx = cyclohexyl) previously studied. The corresponding EttBu2P complex reacted more slowly with PhI and was studied by NMR spectroscopy. The reaction course indicated a mixture of pathways, with contribution from a component that was [PhI] independent. For the CxtBu2P complex, reaction was again monitored by NMR spectroscopy, and was even slower. At high PhI concentrations reaction was predominantly linear in [PhI], but at lower concentrations the [PhI] independent pathway was again observed, and an accelerating influence of the reaction product was observed over the concentration range. The NMR spectra of the EttBu2P and CxtBu2P complexes conducted in C6D6 shows some line broadening that was augmented on addition of PhI. NMR experiments carried out in parallel show that there is rapid ligand exchange between free phosphine and the Pd2Pd complex and also a slow ligand crossover between different P2Pd complexes. DFT calculations were carried out to further test the feasibility of C6D6 involvement in the oxidative addition process, and located Van der Waals complexes for association of the P2Pd(0) complexes with either PhI or benzene. PhI or solvent-assisted pathways for ligand loss are both lower in energy than direct ligand dissociation. Taken all together, these results provide a consistent explanation for the surprising complexity of an apparently simple reaction step. The clear dividing line between reactions that give a di- or monophosphine palladium complex after oxidative addition clarifies the participation of the ligand in coupling catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201301937DOI Listing

Publication Analysis

Top Keywords

oxidative addition
16
p2pd0 complexes
8
nmr spectroscopy
8
[phi] independent
8
complexes
6
complex
6
reaction
6
phi
6
nmr
5
ligand
5

Similar Publications

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Synthesis of 2-Sulfonyl Carbazoles via Oxidative C-H Functionalization of Tetrahydrocarbazoles with Sulfonyl Hydrazides.

Org Lett

January 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.

Herein, we report an approach for the synthesis of 2-sulfonyl carbazoles from the oxidative C-H sulfonylation of tetrahydrocarbazoles. The mechanistic study reveals that this special selectivity is realized by the addition of a sulfonyl radical to the 3,4-dihydrocabazole intermediate via dehydrogenative desaturation of tetrahydrocarbazoles. This approach features readily available starting materials, high regioselectivity, broad substrate scope, and attractive synthetic utility.

View Article and Find Full Text PDF

Rapid Determination of Organic and Inorganic Selenium in Poultry Tissues by Internal Extractive Electrospray Ionization Mass Spectrometry.

Anal Chem

January 2025

The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China.

An online reactive internal extraction electrospray ionization (iEESI) method was developed for the rapid determination of organic and inorganic speciation information for selenium in poultry tissue samples without complex sample pretreatment. The addition of citric acid as a reducing agent to the internal extraction solvent of methanol/acetic acid (99:1, V/V) for iEESI resulted in the reduction of selenate in the sample to selenite, accompanied by the production of malic acid as an oxidation product. The quantitative analysis of selenate was conducted by using malic acid.

View Article and Find Full Text PDF

Background: A decline in skeletal muscle mass and function known as skeletal muscle sarcopenia is an inevitable consequence of aging. Sarcopenia is a major cause of decreased muscle strength, physical frailty and increased muscle fatigability, contributing significantly to an increased risk of physical disability and functional dependence among the elderly. There remains a significant need for a novel therapy that can improve sarcopenia and related problems in aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!