To investigate the function of a bacterial-type phosphoenolpyruvate carboxylase (PEPC2) derived from photosynthetically-grown Chlamydomonas reinhardtii, a fragment of the pepc2 gene was cloned and expressed in Escherichia coli. After optimal induction for 6 h, PEPC activity in the reverse mutant was lower than wild type (0.9 vs. 1.7 U/mg protein), and soluble protein was also lower than wild type (119 vs. 186 mg/g dry wt). In contrast, the total lipid content was increased from 56 (in wild type) to 71 mg/g dry wt, despite the growth rate being slightly diminished. The changes in PEPC activity, soluble protein and total lipid in the forward mutant were the opposite (2.4 U/mg, 230 mg/g, and 44 mg/g dry wt, respectively). Together, these data indicate that PEPC may function as a metabolic pivot in the regulation of protein and lipid accumulation in this alga.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955138PMC
http://dx.doi.org/10.1007/s10529-013-1418-9DOI Listing

Publication Analysis

Top Keywords

wild type
12
mg/g dry
12
chlamydomonas reinhardtii
8
bacterial-type phosphoenolpyruvate
8
phosphoenolpyruvate carboxylase
8
pepc activity
8
lower wild
8
soluble protein
8
total lipid
8
recombinant expression
4

Similar Publications

Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.

View Article and Find Full Text PDF

A Noncatalytic Cysteine Residue Modulates Cobalamin Reactivity in the Human B Processing Enzyme CblC.

Biochemistry

January 2025

Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany.

Human CblC catalyzes the indispensable processing of dietary vitamin B by the removal of its β-axial ligand and an either one- or two-electron reduction of its cobalt center to yield cob(II)alamin and cob(I)alamin, respectively. Human CblC possesses five cysteine residues of an unknown function. We hypothesized that Cys149, conserved in mammals, tunes the CblC reactivity.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

This study explores the effectiveness of various antifungal drugs in treating sporotrichosis caused by Sporothrix schenckii, especially in non-wild-type (non-WT) strains. The drugs tested include enilconazole (ENIL), isavuconazole (ISA), posaconazole (POS), terbinafine (TER), and itraconazole (ITC). The study involved in vitro and in vivo tests on 10 WT isolates and eight ITC non-WT isolates.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!