Published evidences indicate that reactive oxygen species (ROS) can induce lipid peroxidation, which plays important role in the pathophysiology of numerous diseases including atherosclerosis, diabetes, cancer and aging process. Monitoring of oxidative modification or oxidative damages of biomolecules may therefore be essential for the understanding of aging, and age-related diseases. N-epsilon-Hexanoyl-lysine (HEL) is a novel lipid peroxidation biomarker which is derived from the oxidation of omega-6 unsaturated fatty acid. In this chapter, development of HEL ELISA and its applications are reported. Assay range of HEL ELISA was 2-700 nmol/L, and showed good linearity and reproducibility. Accuracy of this assay was validated by recovery test and absorption test. HEL concentration in human urine was 22.9 ± 15.4 nmol/L and it was suggested that HEL exists as low molecular substances, in a free or in the peptide-attached form. In contrast with the urine sample, serum HEL was suggested to exist in the protein-attached form, and hydrolysis by protease might be essential for the accurate measurement of HEL in protein containing samples such as serum and cultured cells. By sample pretreatment with proteases, HEL was successfully detected in oxidized LDL, oxidized serum, and rat serum. In conclusion, HEL ELISA can be applied to measure urine, serum, and other biological samples independent of the animal species, and may be useful for the assessment of omega-6 PUFA oxidation in the living bodies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-94-007-7920-4_5DOI Listing

Publication Analysis

Top Keywords

hel elisa
12
hel
9
omega-6 pufa
8
pufa oxidation
8
lipid peroxidation
8
serum
5
determination hel
4
hel hexanoyl-lysine
4
hexanoyl-lysine adduct
4
adduct novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!