Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sphingomyelin synthase (SMS), which catalyzes ceramide as one of the substrates to produce sphingomyelin, is a critical factor in the sphingolipid biosynthesis pathway. Recent studies indicated that SMS could serve as a novel potential drug target for the treatment of various metabolic diseases such as insulin resistance and atherosclerosis. However, very few small-molecule inhibitors of SMS are known. In this study, we performed structure-based virtual screening in combination with chemical synthesis and bioassay and discovered a class of small-molecule SMS inhibitors. The most potent compound exhibited an IC50 value lower than 20 μM in an in vitro enzymatic assay. To the best of our knowledge, this is the first time that small-molecule SMS inhibitors with potency close to the micromolar range are publicly revealed. The structure-activity relationship demonstrated by this class of compounds provides insights into the structural features that are essential for effective SMS inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2013.12.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!