A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM#14 and Enterobacter cloacae: a mechanistic study. | LitMetric

During any microbial enhanced oil recovery process, both cells and the metabolic products of bacteria govern the tertiary oil recovery efficiency. However, very accurate examination is needed to find the functionality of these tiny creatures at different reservoir conditions. In this regard, the effect of cell structure on ultimate microbial recovery efficiency which is the most dominant mechanism based on the microorganism types (gram-negative or gram-positive) was systematically investigated. At the first stage, possible different active mechanisms using Bacillus stearothermophilus SUCPM#14 strain were tested using specially designed injection protocol, in situ and ex situ core flooding experiments, interfacial tension, viscosity, pH and Amott wettability index measurements. At the second stage, comparing functionality of B. stearothermophilus SUCPM#14 (a gram-positive type) with the previously examined strain namely Enterobacter cloacae as a gram-negative type, proposed this hypothesis that the cell structure significantly affects the interfacial behaviors. New designed protocols were utilized to check the individual effects of cells, bioproducts and interaction of these together on the oil/water and also fluids/rock interfaces. The final results showed that the cells of B. stearothermophilus SUCPM#14 adhere more into the oil/water interface compared to E. cloacae and change its rheological properties; e.g. its elastic properties which affect the ultimate microbial oil recovery efficiency. Eventually, contradicting results revealed that biosurfactant produced by E. cloacae was able to considerably reduce the interfacial tension and alter the wettability of the rock (to neutral conditions) while biosurfactant produced by B. stearothermophilus SUCPM#14 was not very effective.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2013.12.002DOI Listing

Publication Analysis

Top Keywords

stearothermophilus sucpm#14
20
oil recovery
12
recovery efficiency
12
bacillus stearothermophilus
8
enterobacter cloacae
8
cell structure
8
ultimate microbial
8
interfacial tension
8
biosurfactant produced
8
stearothermophilus
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!