In flowering plants, plastid genomes are generally conserved, exhibiting slower rates of sequence evolution than the nucleus and little or no change in structural organization. However, accelerated plastid genome evolution has occurred in scattered angiosperm lineages. For example, some species within the genus Silene have experienced a suite of recent changes to their plastid genomes, including inversions, shifts in inverted repeat boundaries, large indels, intron losses, and rapid rates of amino acid sequence evolution in a subset of protein genes, with the most extreme divergence occurring in the protease gene clpP. To investigate the relationship between the rates of sequence and structural evolution, we sequenced complete plastid genomes from three species (Silene conoidea, S. paradoxa, and Lychnis chalcedonica), representing independent lineages within the tribe Sileneae that were previously shown to have accelerated rates of clpP evolution. We found a high degree of parallel evolution. Elevated rates of amino acid substitution have occurred repeatedly in the same subset of plastid genes and have been accompanied by a recurring pattern of structural change, including cases of identical inversions and intron loss. This "syndrome" of changes was not observed in the closely related outgroup Agrostemma githago or in the more slowly evolving Silene species that were sequenced previously. Although no single mechanism has yet been identified to explain the correlated suite of changes in plastid genome sequence and structure that has occurred repeatedly in angiosperm evolution, we discuss a possible mixture of adaptive and non-adaptive forces that may be responsible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2013.12.004 | DOI Listing |
Planta
January 2025
Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China.
New insights into the phylogeny of species in the family Thymelaeaceae and support of the recognition of D. genkwa and D. aurantiaca as species in the genus Wikstroemia are provided.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
Background: The confused taxonomic classification of Crucigenia is mainly inferred through morphological evidence and few nuclear genes and chloroplast genomic fragments. The phylogenetic status of C. quadrata, as the type species of Crucigenia, remains considerably controversial.
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
The family Daphniphyllaceae has a single genus, and no relevant comparative phylogenetic study has been reported on it. To explore the phylogenetic relationships and organelle evolution mechanisms of Daphniphyllaceae species, we sequenced and assembled the chloroplast and mitochondrial genomes of Daphniphyllum macropodum. We also conducted comparative analyses of organelles in Daphniphyllaceae species in terms of genome structure, phylogenetic relationships, divergence times, RNA editing events, and evolutionary rates, etc.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2025
Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA.
We present the complete chloroplast genome of the eelgrass from Monterey, California. The genome is circular and 144,675 bp in length. It consists of 82 protein-coding, 31 transfer RNA, and 8 ribosomal RNA genes and is 99.
View Article and Find Full Text PDFPlant Divers
November 2024
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.
Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants. However, conserved DNA barcoding markers, including complete plastid genome and nuclear ribosomal DNA (nrDNA) sequences, are inadequate for accurate species identification. Skmer, a recently proposed approach that estimates genetic distances among species based on unassembled genome skims, has been proposed to effectively improve species discrimination rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!