The presynaptic control of dopamine release in the nucleus accumbens (NAc) by glutamate and acetylcholine has a profound impact on reward signaling. Here we provide immunocytochemical and neurochemical evidence supporting the co-localization and functional interaction between nicotinic acetylcholine receptors (nAChRs) and N-methyl-D-aspartic acid (NMDA) receptors in dopaminergic terminals of the NAc. Most NAc dopaminergic terminals possessed the nAChR α4 subunit and the pre-exposure of synaptosomes to nicotine (30 μM) or to the α4β2-containing nAChR agonist 5IA85380 (10 nM) selectively inhibited the NMDA (100 μM)-evoked, but not the 4-aminopyridine (10 μM)-evoked, [(3)H] dopamine outflow; this inhibition was blunted by mecamylamine (10 μM). Nicotine and 5IA85380 pretreatment also inhibited the NMDA (100 μM)-evoked increase of calcium levels in single nerve terminals, an effect prevented by dihydro-β-erythroidine (1 μM). This supports a functional interaction between α4β2-containing nAChR and NMDA receptors within the same terminal, as supported by the immunocytochemical co-localization of α4 and GluN1 subunits in individual NAc dopaminergic terminals. The NMDA-evoked [(3)H]dopamine outflow was blocked by MK801 (1 μM) and inhibited by the selective GluN2B-selective antagonists ifenprodil (1 μM) and RO 25-6981 (1 μM), but not by the GluN2A-preferring antagonists CPP-19755 (1 μM) and ZnCl2 (1 nM). Notably, nicotine pretreatment significantly decreased the density of biotin-tagged GluN2B proteins in NAc synaptosomes. These results show that nAChRs dynamically and negatively regulate NMDA receptors in NAc dopaminergic terminals through the internalization of GluN2B receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2013.12.014DOI Listing

Publication Analysis

Top Keywords

dopaminergic terminals
20
nmda receptors
16
nac dopaminergic
12
receptors dopaminergic
8
nucleus accumbens
8
functional interaction
8
α4β2-containing nachr
8
inhibited nmda
8
nmda 100 μm-evoked
8
nmda
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!