Introduction: AS1411 is a 26-base guanine-rich oligonucleotide aptamer shown binding to surface nucleolin, a protein over-expressed in multiple cancer cells, thus AS1411 labeled with a PET isotope can be explored as a potential diagnostic imaging agent. Our objective was to perform preliminary biological characterization of (64)Cu-labeled AS1411 in vitro and in vivo.

Methods: Four chelators (DOTA, CB-TE2A, DOTA-Bn and NOTA-Bn) were selected to label AS1411 with Cu-64. 185kBq (5μCi) of each tracer was incubated in each well with H460 cells at 37°C for 1, 3, 6, 12, 24 and 48h, respectively (n=4). For microPET/CT imaging, 7.4MBq (200μCi) of AS1411 labeled with either (64)Cu-DOTA or (64)Cu-CB-TE2A was I.V. injected and multiple scans were obtained at 1, 3, 6 and 24h post injection. Afterward in vivo biodistribution studies were performed.

Results: Percent uptake of (64)Cu-DOTA-AS1411 and (64)Cu-CB-TE2A-AS1411 was significantly higher than that of (64)Cu-DOTA-Bn-AS1411 and (64)Cu-NOTA-Bn-AS1411. About 90% of uptake for (64)Cu-DOTA-AS1411 and (64)Cu-CB-TE2A-AS1411 was internalized into cells within 3h and the internalization process was completed before 24h. Both tracers demonstrated reasonable in vivo stability and high binding affinity to the cells. MicroPET imaging with (64)Cu-CB-TE2A-AS1411 showed clear tumor uptake at both legs from 1 to 24h post injection, whereas both tumors were undetectable for up to 24h with (64)Cu-DOTA-AS1411. In addition, (64)Cu-CB-TE2A-AS1411 had faster in vivo pharmacokinetics than (64)Cu-DOTA-AS1411 with lower liver uptake and higher tumor to background contrast.

Conclusion: CB-TE2A is a preferred chelator with higher tumor-to-background ratio, lower liver uptake and faster clearance than DOTA. Aptamer imaging with (64)Cu-CB-TE2A-AS1411 may be feasible for detecting lung cancer, if an appropriate chelator can be identified and further validation can be performed with a known control oligonucleotide. It may also be used as a companion diagnostic imaging agent for AS1411 in the treatment of cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nucmedbio.2013.10.008DOI Listing

Publication Analysis

Top Keywords

aptamer imaging
8
lung cancer
8
as1411 labeled
8
diagnostic imaging
8
imaging agent
8
24h post
8
post injection
8
uptake 64cu-dota-as1411
8
64cu-dota-as1411 64cu-cb-te2a-as1411
8
imaging 64cu-cb-te2a-as1411
8

Similar Publications

Noninvasive molecular imaging using anti-Trop-2 aptamer for targeted therapy of small cell lung cancer.

J Nanobiotechnology

March 2025

Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.

Recent advancements in antibody-drug conjugates (ADCs) targeting trophoblast surface cell antigen 2 (Trop-2) have brought important progress in the field of targeted therapy. This progress also holds promise for the treatment of small cell lung cancer (SCLC) as anti-Trop-2 therapy appears to have a safe and effective clinical activity in metastatic SCLC patients. However, effective treatments of anti-Trop-2 ADCs rely on the comprehensive assessment of Trop-2 expression at the tumor sites, SCLC exhibits intratumoral heterogeneity, making the accurate acquisition of histological biopsies a challenge.

View Article and Find Full Text PDF

Self-Assembled of Multifunctional Fluorescent Copper-DNA Nanoflowers for Cell-Specific-Target MicroRNA Imaging.

ACS Appl Bio Mater

March 2025

Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China.

The development of simple and versatile approaches for the fabrication of DNA-based composite nanomaterials, endowed with defined morphologies and specific functionalities, is of paramount importance for various applications. Herein, we report a simple approach for the synthesis of multifunctional copper-DNA nanoflowers (Cu-DNF) that exclusively consist of rolling circle polymerized nanoflowers (DNF) and in situ synthesized concatemeric fluorescence copper nanoparticles. Through meticulous regulation of the assembly process, it is possible to generate Cu-DNF with precise sizes and stable fluorescence properties.

View Article and Find Full Text PDF

Recent Advances in Aptamers-Based Nanosystems for Diagnosis and Therapy of Cardiovascular Diseases: An Updated Review.

Int J Nanomedicine

March 2025

Department of Cardiovascular Medicine, Yantai Mountain Hospital, Yantai, 264000, People's Republic of China.

The increasing global prevalence of cardiovascular diseases highlights the urgent need for innovative diagnostic and therapeutic strategies. Aptamers, small single-stranded nucleic acid molecules with exceptional specificity and affinity for target biomolecules, have emerged as promising tools for precise diagnostics and targeted therapies. Their selective binding capabilities provide valuable insights into the molecular mechanisms underlying cardiovascular conditions.

View Article and Find Full Text PDF

Background: Calcific aortic valve disease (CAVD), and ensuing severe aortic stenosis (AS), is the foremost valvular disorder of aging, yet preventive therapies are lacking. A better understanding of the molecular underpinnings of aortic valve calcification (AVC) is necessary to develop pharmacologic interventions.

Methods And Results: We undertook large-scale plasma proteomics in a cohort study of adults ≥65 years old, the CHS (Cardiovascular Health Study), to identify individual proteins associated with echocardiographic AVC and incident moderate/severe AS.

View Article and Find Full Text PDF

CD44, a pivotal cell surface molecule, plays a crucial role in many cellular functions, including cell-cell interactions, adhesion, and migration. It serves as a receptor for hyaluronic acid and is involved in lymphocyte activation, recirculation, homing, and hematopoiesis. Moreover, CD44 is a commonly used cancer stem cell marker associated with tumor progression and metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!