We evaluated whether Rho-kinase inhibition (Y-27632) modulated distal lung responsiveness, inflammation, extracellular matrix remodeling and oxidative stress activation in guinea pigs (GPs) with chronic allergic inflammation. GPs were submitted to inhalation of ovalbumin (OVA-2×/week/4 weeks). From the 5th inhalation on, the Rho-kinase inhibitor group animals were submitted to Y-27632 inhalation 10min before each inhalation of OVA. Seventy-two hours after the seventh inhalation, the oscillatory mechanics of the distal lung strips were assessed under the baseline condition and after the ovalbumin challenge. Subsequently, the lung slices were submitted to morphometry. Rho-kinase inhibition in the ovalbumin-exposed animals attenuated distal lung elastance and resistance, eosinophils, IL-2, IL-4, IL-5, IL-13, TIMP-1, MMP-9, TGF-β, IFN-γ, NF-κB and iNOS-positive cells and the volume fraction of 8-iso-PGF2α, elastic, collagen and actin in alveolar walls compared with the OVA group (P<0.05). Rho-kinase inhibition contributed to the control of distal lung responsiveness, eosinophilic and Th1/Th2 responses and extracellular matrix remodeling in an animal model of chronic allergic inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resp.2013.12.012DOI Listing

Publication Analysis

Top Keywords

rho-kinase inhibition
12
distal lung
12
lung
5
inhalation
5
effects rho-kinase
4
inhibition lung
4
lung tissue
4
tissue chronic
4
chronic inflammation
4
inflammation evaluated
4

Similar Publications

NORAD exacerbates metabolic dysfunction-associated steatotic liver disease development via the miR-511-3p/Rock2 axis and inhibits ubiquitin-mediated degradation of ROCK2.

Metabolism

December 2024

Department of Pathology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, China; Postdoctoral Research Station of Clinical Medicine, Jinan University, Guangzhou, China. Electronic address:

Background & Aims: Abnormal expression of long noncoding RNAs is strongly linked to metabolic dysfunction-associated steatotic liver disease (MASLD). However, the precise molecular mechanisms remain unclear. This study explores the roles of noncoding RNA activated by DNA damage (NORAD)/miR-511-3p/Rho-associated protein kinase 2 (Rock2) axis and the NORAD/ROCK2 interaction in the development of MASLD.

View Article and Find Full Text PDF

aPKC/Par3/Par6 polarity complexes regulate podocyte motility and crescent formation in the progression of ANCA-associated vasculitis.

Rheumatology (Oxford)

December 2024

Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.

Objectives: Podocyte bridging may be a key initial event occurring early in crescent formation. This study aims to probe the underlying mechanism of atypical protein kinase C (aPKC)/protease-activated receptor 3(Par3)/Par6 polarity complexes on podocyte motility and crescent formation during the progression of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV).

Methods: The effects of anti-TNF-α monoclonal antibody (mAb) on the crescent formation, localization and expression of aPKC/Par3/Par6 polarity complexes, and activities of small GTPases (Rho/Rac1/Cdc42) were explored in an AAV mouse model.

View Article and Find Full Text PDF

Background: Bortezomib (BTZ), a selective 26 S proteasome inhibitor, is clinically useful in treating multiple myeloma and mantle cell lymphoma. BTZ exerts its antitumor effect by suppressing nuclear factor-B in myeloma cells, promoting endothelial cell apoptosis, and inhibiting angiogenesis. Despite its success, pulmonary complications, such as capillary leak syndrome of the vascular hyperpermeability type, were reported prior to its approval.

View Article and Find Full Text PDF

Unlabelled: Megakaryocytes (MKs) are large, polyploid cells that contribute to bone marrow homeostasis through the secretion of cytokines such as transforming growth factor β1 (TGFβ1). During neoplastic transformation, immature MKs accumulate in the bone marrow where they induce fibrotic remodeling ultimately resulting in myelofibrosis. Current treatment strategies aim to prevent MK hyperproliferation, however, little is understood about the potential of targeting dysregulated cytokine secretion from neoplastic MKs as a novel therapeutic avenue.

View Article and Find Full Text PDF

Ephexin proteins are guanine nucleotide exchange factors for the Rho GTPases. We reported that Ephexin4 regulates M-phase progression downstream of phosphorylated EphA2, a receptor-type tyrosine kinase, through RhoG activation; however, the regulation of Ephexin4 during M phase remains unknown. In this study, a novel Ephexin4 phosphorylation site was identified at Ser41, exclusively in M phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!