Natural killer T (NKT) cells are a unique subset of glycolipid-reactive T lymphocytes that share properties with natural killer (NK) cells. These lymphocytes can produce array of cytokines and chemokines that modulate the immune response, and play a pivotal role in cancer, autoimmunity, infection and inflammation. Owing to these properties, NKT cells have gained attentions for its potential use in antitumor immunotherapies. To date several NKT cell-based clinical trials have been performed in patients with cancer using its potent ligand α-galactosylceramide (α-GalCer). However, inconsistent therapeutic benefit, and inevitable health risks associated with drug dose and NKT cell activation have been observed. α-GalCer-activated NKT cells become anergic and produce both Th1 and Th2 cytokines that may function antagonistically, limiting the desired effector functions. Besides, various co-stimulatory and signaling molecules such as programmed death-1 (PD-1; CD279), casitas B-cell lymphoma-b (Cbl-b) and CARMA1 have been shown to be implicated in the induction of NKT cell anergy. In this review, we discuss the role of such key regulators and their functional mechanisms that may facilitate the development of improved approaches to overcome NKT cell anergy. In addition, we describe the evidences indicating that tailored-ligands can optimally activate NKT cells to obtain desired immune responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.humimm.2013.12.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!