Relaxin as novel strategy in the management of atrial fibrillation: potential roles and future perspectives.

Int J Cardiol

Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China. Electronic address:

Published: February 2014

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2013.11.103DOI Listing

Publication Analysis

Top Keywords

relaxin novel
4
novel strategy
4
strategy management
4
management atrial
4
atrial fibrillation
4
fibrillation potential
4
potential roles
4
roles future
4
future perspectives
4
relaxin
1

Similar Publications

Proteomic and cytokine profiling of a CTRP8-RXFP1 glioma mouse model.

Biochem Pharmacol

December 2024

Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada; Department of Pathology, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada; CancerCare Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada. Electronic address:

Glioblastoma (GB) is the most prevalent and aggressive primary brain tumor with fatal outcome due to a lack of effective treatments. We previously identified C1q-tumor necrosis factor-related protein 8 (CTRP8), a new member of the adiponectin family, as a novel agonist of the relaxin family peptide receptor 1 (RXFP1) and showed that the CTRP8-RXFP1 ligand-receptor system facilitates increased invasiveness and chemoresistance in GB cells. In the present study, we have investigated the role of the CTRP8-RXFP1 signaling axis in glioma progression using an orthotopic mouse model xenografted with human U251 glioma cells stably expressing CTRP8 and RXFP1.

View Article and Find Full Text PDF

Background: Diabetes mellitus-induced erectile dysfunction (DMED) responds poorly to first-line treatments, necessitating the development of new therapeutic strategies. Relaxin-2 (RLX-2) plays a crucial role in protecting vascular endothelium, vasodilatation, and antifibrosis in various diseases. However, its effects and mechanisms on DMED remain unclear.

View Article and Find Full Text PDF

Introduction: Acute failure is a critical condition, encompassed by the sudden or progressive onset of symptoms or signs of congestion. The treatment strategies available are mainly supportive and do not improve mortality or long-term outcomes. Therefore, there is a need for alternative novel treatment strategies.

View Article and Find Full Text PDF

Integrated network pharmacology and experimental validation to explore the mechanisms of Coregonus peled-derived myosin ACE-inhibiting peptides for the treatment of hypertension.

Int J Biol Macromol

January 2025

School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China. Electronic address:

Article Synopsis
  • The study focused on extracting ACE inhibitory peptides from Coregonus peled, a fish rich in protein and bioactive peptides.
  • Six potent peptides were screened, with LCYPR demonstrating the highest activity in inhibiting ACE and potential applications for hypertension treatment.
  • The research identified critical biological targets and pathways associated with LCYPR, offering insights for developing new antihypertensive therapies and functional foods from this fish species.
View Article and Find Full Text PDF

Engineering of Novel Analogues That Are More Receptor-Selective and Potent than the Native Hormone, Insulin-like Peptide 5 (INSL5).

J Med Chem

December 2024

Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia.

Article Synopsis
  • Insulin-like peptide 5 (INSL5) primarily targets the RXFP4 receptor found in the colorectum and has potential for treating gastrointestinal issues like constipation.
  • While INSL5 can bind to the RXFP3 receptor, it does not activate it, highlighting the specificity of the INSL5/RXFP4 pathway for therapeutic applications.
  • The study developed an engineered INSL5 analogue (A13:B7-24-GG) that features a simpler structure, resulting in easier synthesis and improved potency and selectivity compared to native INSL5, making it a strong candidate for constipation treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!