A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SPECT-based functional lung imaging for the prediction of radiation pneumonitis: a clinical and dosimetric correlation. | LitMetric

SPECT-based functional lung imaging for the prediction of radiation pneumonitis: a clinical and dosimetric correlation.

J Med Imaging Radiat Oncol

Department of Physics and Engineering, London Regional Cancer Program, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.

Published: April 2014

Introduction: When we irradiate lung cancer, the radiation dose that can be delivered safely is limited by the risk of radiation pneumonitis (RP) in the surrounding normal lung. This risk is dose-dependent and is commonly predicted using metrics such as the V20, which are usually formulated assuming homogeneous pulmonary function. Because in vivo pulmonary function is not homogeneous, if highly functioning lung can be identified beforehand and preferentially avoided during treatment, it might be possible to reduce the risk of RP, suggesting the utility of function-based prediction metrics.

Methods: We retrospectively identified 26 patients who received ventilation and perfusion single photon emission computed tomography (SPECT-CT) immediately prior to curative-intent radiation therapy. Patients were separated into non-RP and RP groups. As-treated dose-volume histogram (DVH), perfusion-SPECT-based and ventilation-SPECT-based dose-function histogram (DFH) parameters were defined for each group and were tested for differences. The relative utilities of ventilation-based and perfusion-based DFH metrics were assessed using receiver operating characteristic (ROC) analysis.

Results: The standard mean lung dose (MLD) was significantly higher in the RP group; the standard V20 and V30 were higher in the RP group but not significantly. Perfusion-weighted and ventilation-weighted values of the MLD, V20 and V30 were all significantly higher in the RP group. ROC analysis suggested that SPECT-based DFH parameters outperformed standard DVH parameters as predictors of RP.

Conclusions: SPECT-based DFH parameters appear to be useful as predictors of RP.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1754-9485.12145DOI Listing

Publication Analysis

Top Keywords

dfh parameters
12
higher group
12
radiation pneumonitis
8
pulmonary function
8
v20 v30
8
v30 higher
8
spect-based dfh
8
lung
5
spect-based functional
4
functional lung
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!