The increasing use of the 7-valent pneumococcal conjugate vaccine has been accompanied by the rise of non-vaccine serotypes colonizing the human nasopharynx. The vast majority of infections are caused by microorganisms that grow in biofilms. It has recently been shown that the formation of Streptococcus pneumoniae biofilms in vivo and in vitro is hindered by the presence of capsular polysaccharide. The biofilm-forming capacity of pneumococcal clinical isolates with different types of capsular polysaccharide and various isogenic transformants was examined. Strains of serotypes 19A and 19F, but not 19B and 19C, formed ≥ 80% of the quantity of biofilm associated with a non-encapsulated control strain. Strains of serogroup 6 also showed significant biofilm-forming capacity. The capsules of serotypes 19A and 19F, and serogroup 6 contain the disaccharides α-D-Glcp-(1→2)-α-L-Rhap-(1→ and α-D-Glcp-(1→3)-α-L-Rhap-(1→. Serotype 18A and serotypes 18B/18C have very similar capsular disaccharides: α-D-GlcpNAc-(1→3)-β-L-Rhap-(1→ and α-D-Glcp-(1→3)-β-L-Rhap-(1→ respectively. However, the strains of serogroup 18 showed impaired biofilm formation. These results indicate that the chemical composition/structure of the capsular polysaccharide is crucial to the biofilm-forming capacity of pneumococcal serotypes. Testing of the in vitro biofilm-forming ability of isogenic transformants expressing different capsular polysaccharides may help predict the emergence of colonizing, non-vaccine serotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.12370 | DOI Listing |
J Infect Dis
January 2025
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
Cryptococcus gattii is a saprophytic basidiomycete that grows in the environment and can cause systemic cryptococcosis. Ocular cryptococcosis causes blindness and is commonly associated with central nervous system (CNS) infection. Toll-like receptor 9 (TLR9) can control cryptococcosis and another mycosis.
View Article and Find Full Text PDFInt J Microbiol
January 2025
Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Riau, Pekanbaru, Riau 28293, Indonesia.
Alpha-glucosidase inhibitors are one of the therapies used for treating type 2 diabetes by inhibiting the absorption of carbohydrates in the gastrointestinal tract. In addition to antimicrobial activity, some probiotic species show -glucosidase inhibitor activity, making them potential alternative therapies for type 2 diabetes. This study aimed to characterize probiotics from "," a traditional food from North Sumatra, Indonesia, that exhibit -glucosidase inhibition, potentially useful for type 2 diabetes treatment.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.
Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a severe threat for human health and urgently needs new therapeutic approaches. Lytic bacteriophages (phages) are promising clinically viable therapeutic options against CRKP. We attempted to isolate lytic phages against CRKP of sequence type 11 and capsular type 64 (ST11-KL64), the predominant type in China.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
is a Gram-positive bacterium that is responsible for severe nosocomial infections. The rise of multidrug-resistant strains, which can pose significant health threats, prompts the development of new treatment interventions, and much attention has been directed at the development of prophylactic and therapeutic vaccination strategies. Capsular polysaccharides (CPs) are key protective elements of the cell wall and have been proposed as promising candidate antigens.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Beijing Minhai Biotechnology Co. Ltd, Beijing 102600, China. Electronic address:
Streptococcus pneumoniae is a major pathogen of bacterial pneumonia, meningitis, sepsis, and otitis media. The pathogenicity of this bacterium is largely attributed to its polysaccharide capsule, a protective layer around bacterial cell that enables bacteria to resist against host defense. Capsular polysaccharides (CPSs) of S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!