A major question in global environmental policy is whether schemes to reduce carbon pollution through forest management, such as Reducing Emissions from Deforestation and Degradation (REDD+), can also benefit biodiversity conservation in tropical countries. We identified municipalities in Brazil that are priorities for reducing rates of deforestation and thus preserving carbon stocks that are also conservation targets for the endangered jaguar (Panthera onca) and biodiversity in general. Preliminary statistical analysis showed that municipalities with high biodiversity were positively associated with high forest carbon stocks. We used a multicriteria decision analysis to identify municipalities that offered the best opportunities for the conservation of forest carbon stocks and biodiversity conservation under a range of scenarios with different rates of deforestation and carbon values. We further categorized these areas by their representativeness of the entire country (through measures such as percent forest cover) and an indirect measure of cost (number of municipalities). The municipalities that offered optimal co-benefits for forest carbon stocks and conservation were termed REDDspots (n = 159), and their spatial distribution was compared with the distribution of current and proposed REDD projects (n = 135). We defined REDDspots as the municipalities that offer the best opportunities for co-benefits between the conservation of forest carbon stocks, jaguars, and other wildlife. These areas coincided in 25% (n = 40) of municipalities. We identified a further 95 municipalities that may have the greatest potential to develop additional REDD+ projects while also targeting biodiversity conservation. We concluded that REDD+ strategies could be an efficient tool for biodiversity conservation in key locations, especially in Amazonian and Atlantic Forest biomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cobi.12202 | DOI Listing |
Ying Yong Sheng Tai Xue Bao
October 2024
College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
Non-grain utilization of cultivated land threatens farmland ecological environment and soil health, which restricts grain production. To identify the key obstacle factors of cultivated soil under non-grain utilization, explore the changes of soil quality and function, and evaluate the effects of non-grain utilization on the health of farmland soil, we evaluated soil health of farmland under different non-grain utilization types (vegetables, bamboo-abandoned, nursery-grown plant-abandoned, nursery-grown plant-rice) by soil quality index and soil multifunctionality index method combined with sensitivity and resistance approaches. The results showed that soil organic carbon and total nitrogen (TN) in the bamboo-abandoned soil were 95.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, Zhejiang, China.
Fruit quality and yield in orchards will decrease after long-term planting. To analyze the changes of soil quality under different planting years and identify the key factors of the declining of orchard soil quality could provide scientific foundation for optimizing fertilization management of orchard soil. In this study, we analyzed the changes of soil physical, chemical, and biological properties of loquat orchard under different planting years (<10 years, 10-15 years, 15-20 years, ≥20 years) in Ninghai County, Zhejiang Province, and evaluated soil health by using soil quality index, multifunctionality index, and sensitivity and resistance indicators.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
College of Forestry, Agricultural University of Hebei, Baoding 071000, Hebei, China.
We elucidated the changes of soil microbial biomass and community structure in soil profiles under four typical land use types (farmland, grassland, secondary forest and plantation)and across five soil layers (0-10, 10-20, 20-30, 30-40, 40-50 cm) in the northern mountainous region of Hebei Province. We measured soil microbial biomass by phospholipid fatty acid (PLFA) method, and investigated the effects of land use and soil depth on soil microbial biomass and community structure by variance analysis, correlation analysis and redundancy analysis. The results showed that soil water content, bulk density, and organic carbon content of farmland differed significantly from other land use types.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
Successive crop harvest results in soil silicon (Si) loss, which constantly reduces soil available Si. Agricultural measures that can increase the availability of soil Si are in urgent need in agroecosystems. Enhanced weathering of silicate minerals can effectively replenish soil Si, which will promote plant uptake of Si, formation of plant phytolith occluded carbon (PhytOC), and the sequestration of atmospheric CO.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
School of Fishery, Zhejiang Ocean University, Zhoushan 316000, Zhejiang, China.
Mangrove forests are crucial coastal "blue carbon" ecosystems, known for their significant carbon sequestration capabilities to "carbon neutrality" and mitigating global climate change. We used Pb radioisotope dating to analyze sedimentation rates in the sediments of the Oujiang River Estuary mangrove forest, to calculate organic carbon burial rate, and to assess the characteristics and sources of organic carbon burial. The results showed that the average total organic carbon content in the sediments was 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!