Complexing of ligands to photosensitizers (Ps) has gained popularity by enhancing solubility, cell-surface recognition and tissue specificity for applications in Photodynamic Therapy (PDT) and fluorescence-based diagnostics. Here we report on nine carbohydrate-functionalized porphyrazine (Pz-galactopyranose/methyl-ribose) derivatives bearing either H2 , Zn(II) or Ni(II) cores for potential use in PDT. Derivatives proved soluble only in organic solvents; dichloromethane (DCM) and tetrahydrofuran (THF). Derivatives were subsequently solubilized using DCM-based PEG-DSPE5000 -PBS encapsulation for biological studies due to THF cytotoxicity. Absorption spectra analyses viewed no correlation between core ion, carbohydrate type and peripheral position though encapsulation efficiency (%EE) followed a general order of Zn(II) (60-92%) > H2 (5-34%) > Ni(II) (4-21%). As such, phototoxicity of Zn(II)Pz derivatives were far superior to H2 Pz and Ni(II)Pz counterparts following 631.4 nm excitation of MCF-7 breast cancer cells. Variation was attributed to persistent aggregation and low %EE when regarding the absorption properties recorded. It is therefore believed that revision of the encapsulation method for H2 Pz and Ni(II)Pz derivatives would render improved phototoxicity. Zn(II)Pz derivatives show promise as agents for PDT of cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/php.12231 | DOI Listing |
Eur J Nucl Med Mol Imaging
January 2025
Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.
Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Department of Surgery, University of California San Diego, La Jolla, CA, USA.
Background: Gastric cancer poses a major diagnostic and therapeutic challenge. Improved visualization of tumor margins and lymph node metastases with tumor-specific fluorescent markers could improve outcomes.
Methods: To establish orthotopic models of gastric cancer, one million cells of the human gastric cancer cell line, MKN45, were suspended in 50 μl of equal parts PBS and Matrigel and injected into the nude mouse stomach with a 29-gauge needle.
Hepatol Commun
February 2025
Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
Background: Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy.
View Article and Find Full Text PDFInorg Chem
January 2025
Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria.
Platinum(II) complexes prevail as first-line treatment for many cancers but are associated with serious side effects and resistance development. Picoplatin emerged as a promising alternative to circumvent GSH-induced tumor resistance by introducing a bulky 2-picoline ligand. Although clinical studies were encouraging, picoplatin did not receive approval.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China.
It is a major challenge to obtain broadband microwave absorption (MA) properties using low dielectric or magnetic nanoparticle-decorated carbon composites due to the limited single conductive loss or polarization loss of the carbon materials used as substrates. Novel pure cellulose-derived graphite carbon (CGC) materials can be used as an exceptional substrate option due to their special defective graphitic carbon structure, which provides both conduction and polarization loss. Herein, CGC@ZnO composites were first synthesized by atomic layer deposition (ALD) for use as microwave absorbents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!