Iron oxides and humic substances (humics) have substantial effects on biochemical processes, such as methanogenesis, due to their redox reactivity and ubiquitous presence. This study aimed to investigate how methanogenesis is affected by the common occurrence of these compounds, which has not been considered to date. The experiment was conducted with anoxic paddy soil microcosms receiving a humics surrogate compound (anthraquinone-2,6-disulfonate, AQDS) and three iron(III) oxides (ferrihydrite, hematite, and magnetite) differing in crystallinity and conductivity. Ferrihydrite suppressed methanogenesis, whereas AQDS, hematite, and magnetite facilitated methanogenesis. CH4 production in co-occurring ferrihydrite + AQDS, hematite + AQDS, and magnetite + AQDS cultures was 4.1, 1.3, and 0.9 times greater than the corresponding cultures without AQDS, respectively. Syntrophic cooperation between Geobacter and Methanosarcina occurred in the methanogenesis-facilitated cultures. Experimental results suggested that the conductive characteristics of iron(III) oxides was an important factor determining the methanogenic response to the co-occurrence of iron(III) oxides and humics in anaerobic paddy soil. This work indicated that the type of iron(III) oxides may significantly affect carbon cycling under anoxic conditions in natural wetlands.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1574-6941.12274DOI Listing

Publication Analysis

Top Keywords

ironiii oxides
20
co-occurrence ironiii
8
oxides humic
8
humic substances
8
paddy soil
8
hematite magnetite
8
aqds hematite
8
oxides
6
aqds
6
methanogenesis
5

Similar Publications

An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.

View Article and Find Full Text PDF

Designing advanced materials that effectively mitigate the poor cycle life of battery-type electrodes with high specific capacities is crucial for next-generation energy storage systems. Herein, graphene oxide-ceria (GO-CeO) nanocomposite synthesized via a facile wet chemical route is explored as cathode for high-performance supercapacitors. The morphological analysis suggests fine ceria (CeO) nanoparticles dispersed over ultrathin graphene oxide (GO) sheets while structural studies reveal face-centered cubic phase of CeO in the nanocomposite.

View Article and Find Full Text PDF

Chemisorption and physisorption of alcohols on iron(III) oxide-terminated surfaces from nonpolar solvents.

J Colloid Interface Sci

January 2025

Department of Chemistry and The Institute for Energy and Environment Flows, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

Hypothesis: The adsorption isotherm of alkanols at the haematite|hydrocarbon interface should reflect both chemisorption (chemically bonded fraction) and physisorption (hydrogen bonded fraction).

Experiments And Model: Quartz crystal microbalance (QCM) and X-ray photoelectron spectroscopy (XPS) have been used for characterization of FeO|hydrocarbon interfaces with absorbed alcohol. A range of FeO-terminated surfaces, alkanols, hydrocarbons and temperatures have been investigated.

View Article and Find Full Text PDF

Strong coupling FeVO nanoparticles/3D N-doped interconnected porous carbon derived from MOFs by confined adsorption-assembly-pyrolysis for greatly boosting oxygen reduction.

J Colloid Interface Sci

April 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China. Electronic address:

Low-cost and effective electrocatalysts are critical for energy storage and conversion. Herein, iron(III) and vanadium(III) acetylacetonates were first adsorbed and confined in porous zeolitic imidazolate framework-8 (ZIF-8), which further cross-linked together by the methanol-induced-assembly. Following the pyrolysis, the FeVO nanoparticles were efficiently encapsulated within three-dimensional (3D) N-doped interconnected porous carbon, termed FeVO/NIPC.

View Article and Find Full Text PDF

A Chemical Redox Cycling-Based Dual-Mode Biosensor for Self-Powered Photoelectrochemical and Colorimetric Assay of Heat Shock Protein.

ACS Sens

January 2025

College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.

To advance the biological understanding of heat shock protein (HSP) in different types of cancers, it is crucial to achieve its accurate determination. Herein, a dual-mode self-powered photoelectrochemical (PEC) and colorimetric platform was proposed by integrating enzymatic catalysis and a chemical redox cycling amplification strategy. In this system, ascorbic acid (AA), as the signal reporter for PEC and colorimetric assay, can be regenerated during the tris(2-carboxyethyl) phosphine-mediated chemical redox cycling process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!