Antibiotic resistance coupled with decreased development of new antibiotics necessitates the search for novel antibacterial agents. Antivirulence agents offer an alternative to conventional antibiotics. In this work, we report on a family of small-molecule antivirulence agents against methicillin-resistant Staphylococcus aureus (MRSA), the most widespread bacterial pathogen. Structure-activity relationship studies led to the development of a concise synthesis of a 148-member biarylhydroxyketone library. An acylation bond-forming process afforded resorcinols (1) and aryloxy acetonitriles (2) as synthons. A Lewis-acid-activated Friedel-Crafts' acylation step involving a nitrile functionality of 2 by ZnCl2, followed by nucleophilic attack by 1 was executed to obtain biaryl hydroxyketones in excellent yields. A large number of products crystallized. This strategy affords a range of biarylhydroxyketones in a single step. This is the first collective synthetic study documenting access to this class of compounds through a single synthetic operation. In vitro efficacy of compounds in this library was evaluated by a rabbit erythrocyte hemolysis assay. The most efficacious compound, 4f-12, inhibits hemolysis by 98.1 ± 0.1% compared to control in the absence of the compound.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/co400142t | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!