Detailed information about the relationships between structures and properties/activities of peptides as drugs and nutrients is useful in the development of drugs and functional foods containing peptides as active compounds. The bitterness of the peptides is an undesirable property which should be reduced during drug/nutrient production, and quantitative structure bitter taste relationship (QSBR) studies can help researchers to design less bitter peptides with higher target efficiency. Calculated structural parameters were used to develop three different QSBR models (i.e., multiple linear regression, support vector machine, and artificial neural network) to predict the bitterness of 229 peptides (containing 2-12 amino acids, obtained from the literature). The developed models were validated using internal and external validation methods, and the prediction errors were checked using mean percentage deviation and absolute average error values. All developed models predicted the activities successfully (with prediction errors less than experimental error values), whereas the prediction errors for nonlinear methods were less than those for linear methods. The selected structural descriptors successfully differentiated between bitter and nonbitter peptides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859174PMC
http://dx.doi.org/10.1155/2013/501310DOI Listing

Publication Analysis

Top Keywords

prediction errors
12
bitter taste
8
developed models
8
error values
8
peptides
7
qsbr study
4
bitter
4
study bitter
4
taste peptides
4
peptides application
4

Similar Publications

Transfer learning aims to integrate useful information from multi-source datasets to improve the learning performance of target data. This can be effectively applied in genomics when we learn the gene associations in a target tissue, and data from other tissues can be integrated. However, heavy-tail distribution and outliers are common in genomics data, which poses challenges to the effectiveness of current transfer learning approaches.

View Article and Find Full Text PDF

Harnessing spatiotemporal transformation in magnetic domains for nonvolatile physical reservoir computing.

Sci Adv

January 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore.

Combining physics with computational models is increasingly recognized for enhancing the performance and energy efficiency in neural networks. Physical reservoir computing uses material dynamics of physical substrates for temporal data processing. Despite the ease of training, building an efficient reservoir remains challenging.

View Article and Find Full Text PDF

In motor adaptation, learning is thought to rely on a combination of several processes. Two of these are implicit learning (incidental updating of the movement due to sensory prediction error) and explicit learning (intentional adjustment to reduce target error). The explicit component is thought to be fast adapting, while the implicit one is slow.

View Article and Find Full Text PDF

Prediction of body weight (BW) using biometric measurements is an important tool especially for animal welfare and automatic phenotyping tools that needs mathematical models. In this study, it was aimed to predict the BW using body length (BL), chest girth (CG) and width of the waist (WW) for rabbits of the maternal form of Hyla NG. The standard rabbit-raising practices were applied for the animals.

View Article and Find Full Text PDF

Unlabelled: Piperacillin-tazobactam (TZP) is a commonly used broad-spectrum agent. OXA-1 β-lactamases drive global Enterobacterales TZP resistance and raise MICs to the clinical breakpoints (8/4-16/4 µg/mL), making susceptibility testing challenging. Two TZP disks are used globally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!