GM-CSF is an endogenous pulmonary cytokine produced by normal alveolar epithelial cells (AEC) that is a key defender of the alveolar space. AEC GM-CSF expression is suppressed by oxidative stress through alternations in mRNA turnover, an effect that is reversed by treatment with recombinant GM-CSF. We hypothesized that specific microRNA (miRNA) would play a key role in AEC GM-CSF regulation. A genome-wide miRNA microarray identified 19 candidate miRNA altered in primary AEC during oxidative stress with reversal by treatment with GM-CSF. Three of these miRNA (miR 133a, miR 133a*, and miR 133b) are also predicted to bind the GM-CSF 3'-untranslated region (UTR). PCR for the mature miRNA confirmed induction during oxidative stress that was reversed by treatment with GM-CSF. Experiments using a GM-CSF 3'-UTR reporter construct demonstrated that miR133a and miR133b effects on GM-CSF expression are through interactions with the GM-CSF 3'-UTR. Using lentiviral transduction of specific mimics and inhibitors in primary murine AEC, we determined that miR133a and miR133b suppress GM-CSF expression and that their inhibition both reverses oxidant-induced suppression of GM-CSF expression and increases basal expression of GM-CSF in cells in normoxia. In contrast, these miRNAs are not active in regulation of GM-CSF expression in murine EL4 T cells. Thus, members of the miR133 family play key roles in regulation of GM-CSF expression through effects on mRNA turnover in AEC during oxidative stress. Increased understanding of GM-CSF gene regulation may provide novel miRNA-based interventions to augment pulmonary innate immune defense in lung injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924275PMC
http://dx.doi.org/10.1074/jbc.M113.535922DOI Listing

Publication Analysis

Top Keywords

gm-csf expression
24
oxidative stress
20
gm-csf
16
key role
8
expression
8
expression murine
8
alveolar epithelial
8
epithelial cells
8
aec gm-csf
8
mrna turnover
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!