In this work, we review the process of protein unfolding characterized by a solid-state nanopore based device. The occupied or excluded volume of a protein molecule in a nanopore depends on the protein's conformation or shape. A folded protein has a larger excluded volume in a nanopore thus it blocks more ionic current flow than its unfolded form and produces a greater current blockage amplitude. The time duration a protein stays in a pore also depends on the protein's folding state. We use Bovine Serum Albumin (BSA) as a model protein to discuss this current blockage amplitude and the time duration associated with the protein unfolding process. BSA molecules were measured in folded, partially unfolded, and completely unfolded conformations in solid-state nanopores. We discuss experimental results, data analysis, and theoretical considerations of BSA protein unfolding measured with silicon nitride nanopores. We show this nanopore method is capable of characterizing a protein's unfolding process at single molecule level. Problems and future studies in characterization of protein unfolding using a solid-state nanopore device will also be discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188535 | PMC |
http://dx.doi.org/10.2174/09298665113209990077 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China. Electronic address:
The self-assembly of rice glutelin (RG) into RG fibrils (RGFs) represents a promising strategy for enhancing its functional properties. In this study, we investigated the effects of ultrasonic pretreatment on the fibrillation kinetics, structural characteristics, and functional properties of RGFs. The results indicated that ultrasonic pretreatment facilitated the unfolding of RG, resulting in an increased H and β-sheet, thereby accelerating the formation of RGFs and enhancing the fibril conversion rate.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland.
The thermodynamics of pressure-induced protein denaturation could so far not be directly compared with protein denaturation induced by temperature or chemical agents. Here, we provide a new cooperative model for pressure-induced protein denaturation that allows the quantitative comparison of all three denaturing processes based on their free energy, enthalpy, entropy, and cooperativity. As model proteins, we use apolipoprotein A-1 and lysozyme.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
Knotted proteins have a unique topological feature with an open knot, and the physiological significance of these knots remains elusive. In addition, these proteins challenge our understanding of the protein folding process, and whether they retain their native state during unfolding/refolding cycles like other proteins is debated. Most folding studies on knotted proteins have been performed on 3 and 5 knots, monitoring the tryptophan fluorescence.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China. Electronic address:
The aim of this study was to investigate the mechanism of protein digestibility improvement by exploring the changes in structural characteristics of proteins in noodles with varying levels of mechanically activated starch. Therefore, different levels of mechanically activated wheat starch were mixed with refined wheat flour to produce noodles. Results showed that moderately mechanically activated starch could significantly improve protein digestibility and noodles containing 8.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Research and Development Center, Beijing Genetech Pharmaceutical Co., Ltd., Beijing 102200, People's Republic of China.
Understanding the folding mechanisms of multi-domain proteins is crucial for gaining insights into protein folding dynamics. The BphC enzyme, a key player in the degradation of polychlorinated biphenyls consists of eight identical subunits, each containing two domains, with each domain comprising two "βαβββ" motifs. In this study, we employed high-temperature molecular dynamics simulations to systematically analyze the unfolding dynamics of a BphC subunit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!