Megakaryocyte morphogenesis employs a "hypertrophy-like" developmental program that is dependent on P-TEFb kinase activation and cytoskeletal remodeling. P-TEFb activation classically occurs by a feedback-regulated process of signal-induced, reversible release of active Cdk9-cyclin T modules from large, inactive 7SK small nuclear ribonucleoprotein particle (snRNP) complexes. Here, we have identified an alternative pathway of irreversible P-TEFb activation in megakaryopoiesis that is mediated by dissolution of the 7SK snRNP complex. In this pathway, calpain 2 cleavage of the core 7SK snRNP component MePCE promoted P-TEFb release and consequent upregulation of a cohort of cytoskeleton remodeling factors, including α-actinin-1. In a subset of human megakaryocytic leukemias, the transcription factor GATA1 undergoes truncating mutation (GATA1s). Here, we linked the GATA1s mutation to defects in megakaryocytic upregulation of calpain 2 and of P-TEFb-dependent cytoskeletal remodeling factors. Restoring calpain 2 expression in GATA1s mutant megakaryocytes rescued normal development, implicating this morphogenetic pathway as a target in human leukemogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892434PMC
http://dx.doi.org/10.1016/j.devcel.2013.11.013DOI Listing

Publication Analysis

Top Keywords

megakaryocyte morphogenesis
8
cytoskeletal remodeling
8
p-tefb activation
8
7sk snrnp
8
remodeling factors
8
p-tefb
5
calpain
4
calpain activation
4
activation p-tefb
4
p-tefb drives
4

Similar Publications

Deciphering the effect of UM171 on human hematopoietic progenitor cell fate through clonal analysis.

Nat Commun

January 2025

Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.

Ex vivo expansion of hematopoietic stem cells (HSC) requires the maintenance of a stemness state while cells are proliferating. This can be achieved via exposure to UM171 which leads to the degradation of chromatin modifiers and prevents the loss of key epigenetic marks. However, the chromatin landscape varies across populations within the hematopoietic system and the effect of UM171 on self-renewal and differentiation potential of different hematopoietic progenitor cells is less characterized.

View Article and Find Full Text PDF

Deciphering Transcriptomic Variations in Hematopoietic Lineages: HSCs, EBs, and MKs.

Int J Mol Sci

September 2024

Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500019, Telangana, India.

In the realm of hematopoiesis, hematopoietic stem cells (HSCs) serve as pivotal entities responsible for generating various blood cell types, initiating both the myeloid and lymphoid branches within the hematopoietic lineage. This intricate process is marked by genetic variations that underscore the crucial role of genes in regulating cellular functions and interactions. Recognizing the significance of genetic factors in this context, this article delves into a genetic perspective, aiming to unravel the biological factors that govern the transition from one cell's fate to another within the hematopoietic system.

View Article and Find Full Text PDF

The contribution of endocardial cells (EdCs) to the hematopoietic lineages has been strongly debated. Here, we provide evidence that in zebrafish, the endocardium gives rise to and maintains a stable population of hematopoietic cells. Using single-cell sequencing, we identify an endocardial subpopulation expressing enriched levels of hematopoietic-promoting genes.

View Article and Find Full Text PDF
Article Synopsis
  • Platelet homeostasis is vital for blood vessel stability and immune response, but the mechanisms behind the replenishment of their precursor cells (megakaryocytes) are not well understood.
  • Researchers used intravital imaging to discover that plasmacytoid dendritic cells (pDCs) act as sensors in the bone marrow that detect dying megakaryocytes and stimulate the proliferation of their progenitor cells through the release of IFNα.
  • The study highlights that while pDCs usually help fight viral infections, their activation by viruses like SARS-CoV-2 disrupts their monitoring function, leading to an overproduction of megakaryocytes.
View Article and Find Full Text PDF

Human hematopoietic stem cell (HSC)-transferred humanized mice are valuable models for exploring human hematology and immunology. However, sufficient recapitulation of human hematopoiesis in mice requires large quantities of enriched human CD34 HSCs and total-body irradiation for adequate engraftment. Recently, we generated a NOG mouse strain with a point mutation in the c-kit tyrosine kinase domain (W41 mutant; NOGW mice).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!