The presence of mercury in aquatic environments is a matter of concern by part of the scientific community and public health organizations worldwide due to its persistence and toxicity. The phytoremediation consists in a group of technologies based on the use of natural occurrence or genetically modified plants, in order to reduce, remove, break or immobilize pollutants and working as an alternative to replace conventional effluent treatment methods due to its sustainability - low cost of maintenance and energy. The current study provides information about a pilot scale experiment designed to evaluate the potential of the aquatic macrophyte Typha domingensis in a constructed wetland with subsurface flow for phytoremediation of water contaminated with mercury. The efficiency in the reduction of the heavy metal concentration in wetlands, and the relative metal sorption by the T. domingensis, varied according to the exposure time. The continued rate of the system was 7 times higher than the control line, demonstrating a better performance and reducing 99.6±0.4% of the mercury presents in the water contaminated. When compared to other species, the results showed that the T. domingensis demonstrated a higher mercury accumulation (273.3515±0.7234 mg kg(-1)) when the transfer coefficient was 7750.9864±569.5468 L kg(-1). The results in this present study shows the great potential of the aquatic macrophyte T. domingensis in constructed wetlands for phytoremediation of water contaminated with mercury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2013.11.071 | DOI Listing |
Sci Rep
December 2024
British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK.
Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Environmental Management and Toxicology, Michael Okpara University of Agriculture, Umudike, Nigeria.
The geochemical and chemical constituents of river water quality could be influenced by human activities and organic processes like water interacting with the lithogenic structure that the river flows through. Evaluating evidence based primary root of the predominant pollutant ions, their interactions as well as the factors controlling their dominance is crucial in studies regarding water environment and hydrology especially as most studies focus on theoretical methods. In order to understand the water cycle, safeguard surface water resources, and preserve the human environment, this study evaluated surface water hydro-chemical facies, quality dynamics, and portability in southern Nigeria using multivariate statistical approaches by analyzing selected hydro-chemical characteristics as indicators of pollution along the river during wet and dry seasons.
View Article and Find Full Text PDFSci Rep
December 2024
Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Microplastic is one of the most important environmental challenges of recent decades. Although the abundance of microplastics in water sources and water bodies such as the marine were investigated in many studies, knowing the sources of microplastics requires more studies. In this study, litter was investigated as one of the challenges of urban management and the sources of primary microplastic and secondary microplastic in the urban environment.
View Article and Find Full Text PDFNat Commun
December 2024
School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
Heavy metals complexed with organic ligands are among the most critical carcinogens threatening global water safety. The challenge of efficiently and cost-effectively removing and recovering these metals has long eluded existing technologies. Here, we show a strategy of coordinating mediator-based electro-reduction (CMBER) for the single-step recovery of heavy metals from wastewater contaminated with heavy metal-organic complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!