In the present paper, DMSO/H2O mixture with the ratio of volume 1:1 was measured in the cooling process by Raman spectroscopy, and the Raman assignments was made to the DMSO molecular and water molecular. The results showed that the behavior between intra-molecular hydrogen bonds and inter-molecular hydrogen bonds of DMSO and water leads to the change in the Raman spectra of the S==O stretching vibration of DMSO and the O--H stretching vibration of water. Further analysis showed that the hydrogen bond between DMSO and water was enhanced in the course of temperature decreasing process (27 to -30 degrees C), and the intramolecular hydrogen bonds between water and water replaced the intermolecular hydrogen bonds of DMSO and water in the course of temperature decreasing process (-30 to -60 degrees C). The research provides experimental basis for hydrogen bonding theory in aqueous solution.
Download full-text PDF |
Source |
---|
Pharmaceutics
November 2024
Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha P.O. Box 2713, Qatar.
Ketamine HCl, an FDA-approved therapeutic, is administered through various routes, including intranasal delivery. Administering an adequate therapeutic dose of intranasal ketamine HCl is challenging due to the limited volume that can be delivered intranasally given the current commercially available concentrations. This study investigates solubilizing strategies to enhance the aqueous solubility of ketamine HCl for intranasal administration.
View Article and Find Full Text PDFMolecules
December 2024
Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
This study provides a comprehensive analysis of the interactions between dimethyl sulfoxide (DMSO) and two small peptides, diglycine and -acetyl-glycine-methylamide (NAGMA), in aqueous solutions using FTIR spectroscopy and density functional theory (DFT) calculations. ATR-FTIR spectroscopy and DFT results revealed that DMSO does not form direct bonds with the peptides, suggesting that DMSO indirectly influences both peptides by modifying the surrounding water molecules. The analysis of HDO spectra allowed for the isolation of the contribution of water molecules that were simultaneously altered by the peptide and DMSO, and it also explained the changes in the hydration shells of the peptides in the presence of DMSO.
View Article and Find Full Text PDF3 Biotech
January 2025
Peptide and Medicinal Chemistry Research Laboratory, Department of Chemistry, Rani Channamma University, P-B, NH-4, Belagavi, 591 156 India.
Unlabelled: We have developed novel and sustainable homogeneous catalysts employing Glutamic acid (Glu) as a biodegradable and eco-friendly organocatalyst for the synthesis of -(4-oxo-2-phenyl-1,2-dihydroquinazolin-3(4)-yl)isonicotinamide derivatives (-) via multicomponent reactions (MCRs) of isatoic anhydride, isoniazid and heteroaromatic/aromatic aldehyde in ethanol on oil bath stirring at 60 °C. Selected final product homogeneity was examined by various spectroscopic techniques such as C-, H- NMR, FT-IR and LC-MS. For the first time, herein investigated electrochemical behavior of selected derivatives (-) using cyclic voltammetry method.
View Article and Find Full Text PDFCryobiology
January 2025
Specialized Surgical Hospital "Doctor Malinov", 46, Gotse Delchev blvd., 1860 Sofia, Bulgaria.
The cryopreservation of human spermatozoa is an integral part of cryobiology, aiming to support the in-vitro fertilization. The latter relies on the availability of as much as possible reproductively active spermatozoa, whose number after thawing decreases due to the accompanied freezing injury and the cytotoxicity of cryoprotectants. An innovative option to circumvent these obstacles is to make the freezing interface non-wettable, by coating it with rapeseed oil soot possessing intrinsic cryoprotective properties, delaying the ice formation and possibly providing identical rates of intracellular dehydration and extracellular crystallization.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun 28200, Turkey.
Mercury is one of the most hazardous heavy metals and is capable of biomagnification, thereby posing severe risks to ecosystems and human health. Therefore, selective, sensitive, and rapid detection of Hg in a wide range of samples is essential. Herein, we report the synthesis of a new 2-(benzo[d]thiazol-2-yl) phenol-based fluorescent probe (PyS) and its potential as a fluorescent probe for detecting Hg ions in various real samples such as rice, garlic, shrimp, and root samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!