Xuebijing (XBJ) injection is a herbal medicine that has been widely used in the treatment of sepsis in China; however, its role in the development and progression of Acinetobacter baumannii sepsis and the underlying mechanisms remain uninvestigated. In the present study, fifty-four male Wistar rats were randomly assigned to normal-control group, sepsis-control group, and sepsis + XBJ group, each containing three subgroups of different treatment time periods (6, 12, and 24 hrs following injection, resp.). The sepsis model was established by intraperitoneal injection of A. baumannii ATCC 19606. For XBJ treatment, 4 mL/kg XBJ was administrated simultaneously by intravenous injection through caudal vein every 12 hrs. All animals demonstrated ill state, obvious intestinal dysfunction, histopathological lung damages, and overactive inflammatory responses after A. baumannii infection, and these events could be partially reversed by XBJ treatment from the beginning of infection. XBJ induced an increase in the expression of anti-inflammatory mediator annexin A1; however, two proinflammatory cytokines, interleukin-8 (IL-8) and tumor necrosis factor- α (TNF- α ), were decreased at the each monitored time point. These findings suggested that XBJ via its cytokine-mediated anti-inflammatory effects might have a potential role in preventing the progression of A. baumannii infection to sepsis by early administration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863526PMC
http://dx.doi.org/10.1155/2013/804940DOI Listing

Publication Analysis

Top Keywords

acinetobacter baumannii
8
proinflammatory cytokines
8
xbj treatment
8
baumannii infection
8
xbj
7
sepsis
6
baumannii
5
xuebijing protects
4
protects rats
4
rats sepsis
4

Similar Publications

Artificial intelligence (AI) is a promising approach to identify new antimicrobial compounds in diverse microbial species. Here we developed an AI-based, explainable deep learning model, EvoGradient, that predicts the potency of antimicrobial peptides (AMPs) and virtually modifies peptide sequences to produce more potent AMPs, akin to in silico directed evolution. We applied this model to peptides encoded in low-abundance human oral bacteria, resulting in the virtual evolution of 32 peptides into potent AMPs.

View Article and Find Full Text PDF

Recombinant Expression of a New Antimicrobial Peptide Composed of hBD-3 and hBD-4 in Escherichia coli and Investigation of Its Activity Against Multidrug-Resistant Bacteria.

Probiotics Antimicrob Proteins

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, No. 20 Dongda Street, Beijing, 100071, Fengtai District, China.

Human β-defensin (HBD) has been recognized as a promising antimicrobial agent due to its broad-spectrum antimicrobial activity against various pathogens. In our previous work, we engineered a chimeric human β-defensin, designated H4, by fusing human β-defensin 3 and human β-defensin 4, resulting in enhanced antimicrobial activity and salt stability. However, the high cost of chemical synthesis due to the relatively large number of amino acids in H4 has limited its applications.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are renowned for their potent bacteriostatic activity and safety, rendering them invaluable in animal husbandry, food safety, and medicine. Despite their potential, the physiological toxicity of AMPs to host cells significantly hampers their biosynthetic production. This study presents a novel approach for the biosynthesis of the antimicrobial peptide Kiadin by engineering a DAMP4-DPS-Kiadin fusion protein to mitigate host cell toxicity and achieve high-level expression.

View Article and Find Full Text PDF

Acinetobacter baumannii is an opportunistic pathogen that is often studied in commonly used rich media in laboratories worldwide. Due to the metabolic versatility of A. baumannii, it can be cultured in different growth mediums; however, this can lead to genotypic and phenotypic variations.

View Article and Find Full Text PDF

Ligand-functionalized InP-based quantum dots (QDs) have been developed as an innovative class of nontoxic photosensitizer suitable for antimicrobial applications, aimed at reducing or preventing pathogen transmission from one host to another via high contact surfaces. A hot injection method followed by functionalization via ligand exchange with 9-anthracene carboxylic acid (ACA) yielded the desired core/shell InP/ZnSe/ZnS QDs. Transmission electron microscopy (TEM) revealed these QDs to be uniform in size (∼3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!