The Dictyostelium discoideum RNA-dependent RNA polymerase RrpC silences the centromeric retrotransposon DIRS-1 post-transcriptionally and is required for the spreading of RNA silencing signals.

Nucleic Acids Res

Ribogenetics@Biochemistry Lab, School of Engineering and Science, Molecular Life Sciences Research Center, Jacobs University Bremen, Campus Ring 1, DE-28759 Bremen, Germany, Abteilung Genetik, Universität Kassel, Heinrich-Plett-Strasse 40, DE-34132 Kassel, Germany, Friedrich-Schiller-Universität Jena, Institut für Pharmazie, Lehrstuhl für Pharmazeutische Biologie, Semmelweisstraße 10, DE-07743 Jena, Germany, Division of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory (SciLifeLab Stockholm), School of Biotechnology, SE-171 65 Solna, Sweden, Garvan Institute of Medical Research, 384 Victoria St Darlinghurst, NSW 2010, Australia, Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, PO Box 596, S-75124 Uppsala, Sweden and Science for Life Laboratory, SE-75124 Uppsala, Sweden.

Published: March 2014

Dictyostelium intermediate repeat sequence 1 (DIRS-1) is the founding member of a poorly characterized class of retrotransposable elements that contain inverse long terminal repeats and tyrosine recombinase instead of DDE-type integrase enzymes. In Dictyostelium discoideum, DIRS-1 forms clusters that adopt the function of centromeres, rendering tight retrotransposition control critical to maintaining chromosome integrity. We report that in deletion strains of the RNA-dependent RNA polymerase RrpC, full-length and shorter DIRS-1 messenger RNAs are strongly enriched. Shorter versions of a hitherto unknown long non-coding RNA in DIRS-1 antisense orientation are also enriched in rrpC- strains. Concurrent with the accumulation of long transcripts, the vast majority of small (21 mer) DIRS-1 RNAs vanish in rrpC- strains. RNASeq reveals an asymmetric distribution of the DIRS-1 small RNAs, both along DIRS-1 and with respect to sense and antisense orientation. We show that RrpC is required for post-transcriptional DIRS-1 silencing and also for spreading of RNA silencing signals. Finally, DIRS-1 mis-regulation in the absence of RrpC leads to retrotransposon mobilization. In summary, our data reveal RrpC as a key player in the silencing of centromeric retrotransposon DIRS-1. RrpC acts at the post-transcriptional level and is involved in spreading of RNA silencing signals, both in the 5' and 3' directions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3950715PMC
http://dx.doi.org/10.1093/nar/gkt1337DOI Listing

Publication Analysis

Top Keywords

spreading rna
12
rna silencing
12
silencing signals
12
dirs-1
11
dictyostelium discoideum
8
rna-dependent rna
8
rna polymerase
8
polymerase rrpc
8
centromeric retrotransposon
8
retrotransposon dirs-1
8

Similar Publications

Decoding the SARS-CoV-2 Infection Process: Insights into Origin, Spread, and Therapeutic Approaches.

Microb Pathog

January 2025

Department of Bioengineering, Faculty of engineering, Integral University, Lucknow-226026, India. Electronic address:

Globally, over 768 million confirmed cases and 6.9 million deaths had been documented as of July 17, 2023. Coronaviruses have a relatively large RNA genome.

View Article and Find Full Text PDF

Identification of Potential Vectors and Detection of Rift Valley Fever Virus in Mosquitoes Collected Before and During the 2022 Outbreak in Rwanda.

Pathogens

January 2025

Department of Entomology; The Global Change Center at Virginia Tech; and the Center for Emerging Zoonotic & Arthropod-Borne Pathogens (CeZAP), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.

Rift Valley fever virus (RVFV) is an emerging mosquito-borne arbovirus of One Health importance that caused two large outbreaks in Rwanda in 2018 and 2022. Information on vector species with a role in RVFV eco-epidemiology in Rwanda is scarce. Here we sought to identify potential mosquito vectors of RVFV in Rwanda, their distribution and abundance, as well as their infection status.

View Article and Find Full Text PDF

Flaviviruses, a group of single-stranded RNA viruses spread by mosquitoes or ticks, include several significant neurotropic viruses, such as West Nile virus (WNV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and Zika virus (ZIKV). These viruses can cause a range of neurological diseases during acute infection, from mild, flu-like symptoms to severe and fatal encephalitis. A total of 20-50% of patients who recovered from acute flavivirus infections experienced long-term cognitive issues.

View Article and Find Full Text PDF

Evaluation of Yellow Fever Virus Infection in Mosquitoes from Pakistan with Distinct Knockdown Resistance Genotypes.

Insects

December 2024

Laboratório de Biologia, Controlee Vigilância de InsetosVetores, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil.

Background: Yellow fever (YF) is an acute hemorrhagic disease endemic to Africa and Latin America; however, no cases have been reported in Asian regions with high infestation. Factors such as environmental conditions and genetic variations in the yellow fever virus (YFV) strains and mosquito populations may explain this absence. Mosquito populations have undergone strong selective pressure owing to the excessive use of insecticides.

View Article and Find Full Text PDF

In Vitro Insights into Bacteriocin-Mediated Modulation of Chicken Cecal Microbiota.

Int J Mol Sci

January 2025

Food Science Department, Food and Agriculture Faculty, Université Laval, Quebec, QC G1V 0A6, Canada.

Reducing the use of antibiotics in animal husbandry is essential to limit the spread of resistance. A promising alternative to antibiotics resides in bacteriocins, which are antimicrobial peptides produced by bacteria showing a great diversity in terms of spectrum of activity, structure, and mechanism of action. In this study, the effects of diverse bacteriocins on the composition and metabolic activity of chicken cecal microbiota were examined in vitro, in comparison with antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!