Wnt/β-catenin signaling pathway plays an important role in bone metabolism. This signal is subject to strict regulation, involving endogenous soluble inhibitors. Dkk1 is a member of family of secreted protein which functions in head induction during Xenopus embryogenesis. Dkk1 forms a ternary complex with LRP5/6 and Kremen, resulting in suppression of Wnt signaling and decreased bone formation. Heterozygous knockout mice of Dkk1 show high bone mass, while transgenic mice overexpressing Dkk1 exhibit low bone mass phenotype. Anti-Dkk1 monoclonal antibody has been shown to accelerate bone formation and increase bone mineral density in various animal models and is under development as a bone-anabolic agent.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bone formation
8
bone mass
8
bone
7
[anti-dickkopf1 dkk1
4
dkk1 antibody
4
antibody bone
4
bone anabolic
4
anabolic agent
4
agent treatment
4
treatment osteoporosis]
4

Similar Publications

Programmed Transformation of Osteogenesis Microenvironment by a Multifunctional Hydrogel to Enhance Repair of Infectious Bone Defects.

Adv Sci (Weinh)

January 2025

Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China.

Repair of infectious bone defects remains a serious problem in clinical practice owing to the high risk of infection and excessive reactive oxygen species (ROS) during the early stage, and the residual bacteria and delayed Osseo integrated interface in the later stage, which jointly creates a complex and dynamic microenvironment and leads to bone non-union. The melatonin carbon dots (MCDs) possess antibacterial and osteogenesis abilities, greatly simplifying the composition of a multifunctional material. Therefore, a multifunctional hydrogel containing MCDs (GH-MCD) is developed to meet the multi-stage and complex repair needs of infectious bone injury in this study.

View Article and Find Full Text PDF

The rapid and efficient bone regeneration is still in unsatisfactory outcomes, demonstrating alternative strategy and molecular mechanism is necessary. Nanoscale biomaterials have shown some promising results in enhancing bone regeneration, however, the detailed interaction mechanism between nanomaterial and cells/tissue formation is not clear. Herein, a molecular-based inorganic-organic nanomaterial poly(citrate-siloxane) (PCS) is reported which can rapidly enhance osteogenic differentiation and bone formation through a special interaction with the cellular surface communication network factor 3 (CCN3), further activating the Wnt10b/β-catenin signaling pathway.

View Article and Find Full Text PDF

Fractures, with a yearly incidence of 1.2%, can lead to healing complications in up to 10% of cases. The angiogenic stimulant deferoxamine (DFO) is recognized for enhancing bone healing when administered into the fracture gap.

View Article and Find Full Text PDF

Introduction: is a medicinal plant that produces silymarin, which has been demonstrated to possess antiviral, anti-neurodegenerative, and anticancer activities. Silybin (A+B) are two major hepatoprotective flavonolignans produced predominantly in fruits. Several attempts have been made to increase the synthesis of silymarin, or its primary components, silybin (A+B).

View Article and Find Full Text PDF

Fibrous dysplasia is a slow-progressing benign condition characterized by abnormal bone formation that leads to some skeletal disorders. Although some of the fibrous dysplasia have unusual clinical and radiographic features that can lead to a challenging diagnosis, most lesions reveal an expansile bone defect due to cortex thinning. This report presented a case of monostotic fibrous dysplasia of a 43-year-old woman with involvement of the right maxillary jaw and sinuses, which indicated unusual histopathological features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!