Docosahexaenoic acid (DHA) shows more pronounced relaxation when blood vessel is contracted with prostanoid receptor agonists than other stimulants. The present study was carried out to obtain information on the mechanisms underlying prostanoid receptor-selective relaxant action of DHA, particularly focusing on the possible roles for K(+) channels and its CYP epoxygenase (EOX) metabolites. In endothelium-denuded rat thoracic aorta, DHA (10(-5) M) almost completely relaxed U46619 (a thromboxane A2 (TP) receptor agonist)-contracted muscle without substantially affecting noradrenaline (NA)-induced contraction. DHA-induced relaxation was not affected by a large conductance, calcium- and voltage-activated K(+) (BK) channels inhibitor iberiotoxin (IbTX, 10(-7) M) but was almost abolished by high-KCl (8×10(-2) M) or 10(-2) M tetraethylammonium (TEA) which non-selectively inhibits K(+) channel activity. DHA also prominently relaxed U46619-contracted aorta even in the presence of CYP inhibitors (SKF525A or miconazole, each at 10(-5) M). However, in the presence of these CYP inhibitors, the relaxant action of DHA was not affected by 10(-2) M TEA. In supporting a significant role for CYP EOX metabolites in the blood vessel relaxation to DHA, 16,17-epoxy docosapentaenoic acid (16,17-EpDPE), but not 19,20-EpDPE, showed a potent relaxation in U46619-contracted aorta, and this action was significantly attenuated by 10(-2) M TEA. The present findings suggest that the relaxant action of DHA shown in the rat aorta contracted through the stimulation with TP receptor is generated by DHA itself and its CYP EOX metabolites. The relaxant effect of DHA metabolites seems to be partly triggered by the activation of K(+) channels though the role for BK channel is insignificant.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b13-00746DOI Listing

Publication Analysis

Top Keywords

relaxant action
12
action dha
12
eox metabolites
12
dha
9
channels cyp
8
cyp epoxygenase
8
metabolites relaxant
8
docosahexaenoic acid
8
rat aorta
8
aorta contracted
8

Similar Publications

Veratridine Induces Vasorelaxation in Mouse Cecocolic Mesenteric Arteries.

Toxins (Basel)

December 2024

Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.

The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is one of the most common diseases affecting millions of people worldwide. The use of existing antidepressants in many cases does not allow achieving stable remission, probably due to insufficient understanding of pathological mechanisms. This indicates the need for the development of more effective drugs based on in-depth understanding of MDD's pathophysiology.

View Article and Find Full Text PDF

Myotonia congenita, both in a dominant (Thomsen disease) and recessive form (Becker disease), is caused by molecular defects in that encodes the major skeletal muscle chloride channel, ClC-1. This channel is important for the normal repolarization of muscle action potentials and consequent relaxation of the muscle, and its dysfunction leads to impaired muscle relaxation after voluntary or evoked contraction and muscle stiffness. More than 300 pathogenic variants have been found in association with congenital myotonia, inherited as recessive or dominant traits (with complete or incomplete penetrance).

View Article and Find Full Text PDF

Tinospora crispa (L.) Hook.f. & Thomson vines ameliorates hyperuricemia by inhibiting synthesis and promoting excretion of uric acid through targeting NLRP3/caspase-1/IL-1β pathway.

J Ethnopharmacol

December 2024

Department of Rheumatology and Immunology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China. Electronic address:

Ethnopharmacological Relevance: Tinospora crispa (L.) Hook.f.

View Article and Find Full Text PDF

Minocycline prevents monocrotaline-induced pulmonary hypertension through the attenuation of endothelial dysfunction and vascular wall thickening.

J Pharmacol Sci

January 2025

Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan. Electronic address:

Pulmonary hypertension (PH) is a progressive disease with a poor prognosis in which high pulmonary artery pressure leads to right heart failure, therefore, there is an urgent need to elucidate pathological mechanisms and to develop new treatment for PH. Minocycline has not only antibacterial effects but also anti-inflammatory effects in various tissues. We hypothesize that minocycline could prevent PH development in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!