The establishment of symbiotic associations in plants requires calcium oscillations that must be decoded to invoke downstream developmental programs. In animal systems, comparable calcium oscillations are decoded by calmodulin (CaM)-dependent protein kinases, but symbiotic signaling involves a calcium/CaM-dependent protein kinase (CCaMK) that is unique to plants. CCaMK differs from the animal CaM kinases by its dual ability to bind free calcium, via calcium binding EF-hand domains on the protein, or to bind calcium complexed with CaM, via a CaM binding domain. In this study, we dissect this dual regulation of CCaMK by calcium. We find that calcium binding to the EF-hand domains promotes autophosphorylation, which negatively regulates CCaMK by stabilizing the inactive state of the protein. By contrast, calcium-dependent CaM binding overrides the effects of autophosphorylation and activates the protein. The differential calcium binding affinities of the EF-hand domains compared with those of CaM suggest that CCaMK is maintained in the inactive state at basal calcium concentrations and is activated via CaM binding during calcium oscillations. This work provides a model for decoding calcium oscillations that uses differential calcium binding affinities to create a robust molecular switch that is responsive to calcium concentrations associated with both the basal state and with oscillations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904005PMC
http://dx.doi.org/10.1105/tpc.113.116921DOI Listing

Publication Analysis

Top Keywords

calcium oscillations
16
calcium binding
16
calcium
15
ef-hand domains
12
cam binding
12
protein kinase
8
decoding calcium
8
oscillations decoded
8
binding ef-hand
8
inactive state
8

Similar Publications

Introduction: Ca2+ signaling in fibroblasts would be one of the important mediators of lung fibrosis. This study investigated the relationship between calcium channel blocker usage and the risk of developing interstitial lung disease and idiopathic pulmonary fibrosis.

Material And Methods: This cohort study used data from the Korean National Health Screening Cohort spanned from January 1, 2004, to December 31, 2015.

View Article and Find Full Text PDF

Octadecaneuropeptide promotes the migration of astrocyte via ODN metabotropic receptor and calcium signaling pathway.

Peptides

January 2025

University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation. 2092 Tunis, Tunisia.

Migration is an essential characteristic of cells that occurs during many physiological and pathological processes. Astrocytes represent the most abundant cell type in the adult central nervous system (CNS), that play a crucial role in various functions such as guiding and supporting neuronal migration during development and maintaining brain homeostasis at adulthood. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN).

View Article and Find Full Text PDF

The RNA-binding properties of Annexins.

J Mol Biol

January 2025

Elettra Sincrotrone Trieste, Italy; The Wohl Institute, King's College London, 5 Cutcombe Rd, SW59RT London, UK. Electronic address:

Annexins are a family of calcium-dependent phospholipid-binding proteins involved in crucial cellular processes such as cell division, calcium signaling, vesicle trafficking, membrane repair, and apoptosis. In addition to these properties, Annexins have also been shown to bind RNA, although this function is not universally recognized. In the attempt to clarify this important issue, we employed an integrated combination of experimental and computational approaches.

View Article and Find Full Text PDF

Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.

View Article and Find Full Text PDF

LIPUS activated piezoelectric pPLLA/SrSiO composite scaffold promotes osteochondral regeneration through P2RX1 mediated Ca signaling pathway.

Biomaterials

January 2025

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China. Electronic address:

Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO). This innovative scaffold continually releases bioactive Sr and SiO ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!