AI Article Synopsis

  • Researchers want to understand how Duchenne muscular dystrophy (DMD) gets worse over time, even though they know what causes it.
  • They found that muscle cells without dystrophin release signals that can harm the muscles and cause inflammation.
  • Blocking one of these signals in tests on mice helped their muscles work better and showed that it might be a good way to help treat DMD in the future.

Article Abstract

Although the cause of Duchenne muscular dystrophy (DMD) is known, the specific factors that initiate and perpetuate disease progression are not well understood. We hypothesized that leaky dystrophin-deficient skeletal muscle releases endogenous danger signals (TLR ligands), which bind to Toll-like receptors (TLRs) on muscle and immune cells and activate downstream processes that facilitate degeneration and regeneration in dystrophic skeletal muscle. Here, we demonstrate that dystrophin-deficient mouse muscle cells show increased expression of several cell-surface and endosomal TLRs. In vitro screening identified ssRNA as a relevant endogenous TLR7 ligand. TLR7 activation led to myd88-dependent production of pro-inflammatory cytokines in dystrophin-deficient muscle cells, and cause significant degeneration/regeneration in vivo in mdx mouse muscle. Also, knockout of the central TLR adaptor protein, myd88 in mdx mice significantly improved skeletal and cardiac muscle function. Likewise, proof-of-concept experiments showed that treating young mdx mice with a TLR7/9 antagonist significantly reduced skeletal muscle inflammation and increased muscle force, suggesting that blocking this pathway may have therapeutic potential for DMD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990161PMC
http://dx.doi.org/10.1093/hmg/ddt656DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
muscle
10
toll-like receptors
8
dystrophin-deficient skeletal
8
mouse muscle
8
muscle cells
8
mdx mice
8
skeletal
5
role toll-like
4
receptors pathogenesis
4

Similar Publications

Type 3 deiodinase activation mediated by the Shh/Gli1 axis promotes sepsis-induced metabolic dysregulation in skeletal muscles.

Burns Trauma

January 2025

Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China.

Background: Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the effects of pre-conditioning exercise on body lipid metabolism, leptin secretion, and the downstream pathways at the early stage of type 2 diabetes mellitus (T2DM).

Materials And Methods: The T2DM model was established using an 8-week high-sugar, high-fat diet combined. The T2DM model was established using an 8-week high-sugar, high-fat diet combined with streptozocin (STZ) injection.

View Article and Find Full Text PDF

Prevalence and risk factors for skeletal muscle mass loss in individuals with type 1 diabetes.

Diabetol Int

January 2025

Division of Diabetology and Metabolism, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan.

This study aimed to the investigate prevalence and factors associated with reduced skeletal muscle mass in non-elderly adults with type 1 diabetes (T1D). Ninety-nine patients (65 women, mean age: 43 ± 11 years, range 20-65 years) with acute-onset T1D who underwent body component analysis between October 2016 and April 2018 were studied. Bioelectrical impedance analysis was used to calculate the skeletal muscle mass index (SMI) of the limbs.

View Article and Find Full Text PDF

Periparturient dairy cows experience metabolic adaptations to prepare for increased nutrient requirements of the fetus and the onset of lactation. Adaptations include increased peripheral tissue insulin resistance, which can be evaluated experimentally using intravenous glucose tolerance tests (IVGTT). The objective of this study was to determine if prepartum skeletal muscle reserves and supplementation of branched-chain volatile fatty acids (BCVFA) in the prepartum period affected blood glucose, β-hydroxybutyrate (BHB), and insulin concentrations 2 wk prepartum and 1 wk postpartum utilizing an IVGTT.

View Article and Find Full Text PDF

Prolonged exposure to high environmental temperatures results in an accumulated heat load that induces a heat stress (HS) response in dairy cattle. Heat stress compromises dairy farm profitability by reducing milk yield, altering milk composition, and hindering reproductive performance. The ability to alternate between carbohydrate and lipid sources for energy production is termed metabolic flexibility (Met Flex).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!