Self-seeded growth of five-fold twinned copper nanowires: mechanistic study, characterization, and SERS applications.

Langmuir

Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, Republic of China.

Published: January 2014

A comprehensive mechanistic study conducted on the formation mechanism of five-fold twinned copper nanowires by heating copper(I) chloride with oleylamine at 170 °C is presented. Electron microscopy and UV-visible absorption spectra are used to analyze the growth mechanism of copper nanowires. High-resolution transmission electron microscopy and selected-area electron diffraction are used to investigate the detailed structure of copper nanowires and nanoparticles, and a five-twinned structure is shown to exist in the copper nanowires and nanoparticles. Additionally, experiments have been performed to indirectly confirm that oleylamine preferentially adsorbs on the {100} facets of growing crystals. On the basis of the above results, the self-seeded growth of copper nanowires is confirmed. In the initial stage of reactions, copper nanoparticles with two distinctive sizes are formed. As the reaction proceeds, larger five-twinned copper nanoparticles serve as seeds for anisotropic crystal growth. Further, copper atoms generated from an Ostwald ripening process or reduction reactions of a copper(I) chloride-oleylamine complex continue to deposit and crystallize on the twin boundaries. Once the {110} planes are generated, oleylamine preferentially adsorbs on the newly formed {100} facets and then guides the formation of nanowires. The electrical resistivity of a single copper nanowire is measured to be 41.25 nΩ-m, which is of the same order of magnitude as the value of bulk copper (16.78 nΩ-m). Finally, an effective surface-enhanced Raman spectroscopy active substrate made of copper nanowire is used to detect the 4-mercaptobenzoic acid molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la4036198DOI Listing

Publication Analysis

Top Keywords

copper nanowires
24
copper
12
self-seeded growth
8
five-fold twinned
8
twinned copper
8
mechanistic study
8
electron microscopy
8
nanowires nanoparticles
8
oleylamine preferentially
8
preferentially adsorbs
8

Similar Publications

The optimized composition and precisely tailored structure configuration play critical roles in enhancing the catalytic reaction kinetics. Here we report a distinctive core@satellite strategy for designing the advanced platinum-nickel@platinum-nickel-copper-cobalt-indium high-entropy alloy nanowires (PtNi@HEA NWs) as efficient bifunctional catalysts in the proton exchange membrane fuel cell. Impressively, the PtNi@HEA NWs/C shows 19.

View Article and Find Full Text PDF

Approximately 2 billion people still lack access to clean drinking water. Extensive efforts are underway to develop semiconductor photocatalysts for water disinfection and environmental remediation, but conventional liquid-solid diphase interfacial photocatalysts face challenges like low diffusion coefficients and limited solubility of dissolved oxygen. This study introduces freestanding copper oxide fluffy pine needle structures (CO-FPNs) with tunable water pollutants-gas-solid (WGS) triple-phase interfaces that enhance oxygen enrichment and reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Tip-Induced 3D Printing on the Nanoscale with Field Emission Scanning Probes.

Small

December 2024

Institute of Micro- and Nanotechnologies MacroNano, Microsystems Technology Group, Technische Universität Ilmenau, Max-Planck-Ring 12, 98693, Ilmenau, Germany.

3D printing down to the nanoscale remains a significant challenge. In this paper, the study explores the use of scanning probes that emit low-energy electrons (<100 eV) coupled with the localized injection and electron-induced decomposition of precursor molecules, for the precise localized deposition of 3D nanostructures. The experiments are performed inside the chamber of a scanning electron microscope (SEM), enabling the use of the in-built gas injector system (GIS) with gaseous naphthalene precursor for carbon deposition, as well as immediate inspection of the deposits by SEM.

View Article and Find Full Text PDF

Thin-film membranes of Pd-Ag and Pd-Cu alloys capable of releasing hydrogen in a wide temperature range have been developed. The surface activation of the membranes with a nanostructured coating made it possible to intensify hydrogen transport through Pd-containing membranes at low temperatures. This effect was achieved by accelerating limiting surface processes by increasing the active area of the membrane.

View Article and Find Full Text PDF

This article describes an approach to making highly stable copper nanowire networks on any type of substrates. These nanostructured materials are highly sought after for, among other applications, the development of next-generation flexible electronics. Their high susceptibility to oxidation in air currently limits their use in the real world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!