We demonstrate graphene-assisted controlled fabrication of various ZnO 1D nanostructures on the SiO2/graphene substrate at a low temperature (540 °C) and elucidate the growth mechanism. Monolayer and a few layer graphene prepared by chemical vapor deposition (CVD) and subsequently coated with a thin Au layer followed by rapid thermal annealing is shown to result in highly aligned wurtzite ZnO nanorods (NRs) with clear hexagonal facets. On the other hand, direct growth on CVD graphene without a Au catalyst layer resulted in a randomly oriented growth of dense ZnO nanoribbons (NRBs). The role of in-plane defects and preferential clustering of Au atoms on the defect sites of graphene on the growth of highly aligned ZnO NRs/nanowires (NWs) on graphene was established from micro-Raman and high-resolution transmission electron microscopy analyses. Further, we demonstrate strong UV and visible photoluminescence (PL) from the as-grown and post-growth annealed ZnO NRs, NWs, and NRBs, and the origin of the PL emission is correlated well with the X-ray photoelectron spectroscopy analysis. Our results hint toward an epitaxial growth of aligned ZnO NRs on graphene by a vapor-liquid-solid mechanism and establish the importance of defect engineering in graphene for controlled fabrication of graphene-semiconductor NW hybrids with improved optoelectronic functionalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am404411c | DOI Listing |
Cureus
December 2024
Cardiology, King Khalid University Hospital, Riyadh, SAU.
Troponin is a highly specific biomarker for myocardial injury. It plays a critical role in the diagnosis of acute coronary syndrome (ACS). However, elevated troponin levels are not exclusively due to cardiac ischemia and may be observed in many non-cardiac conditions, including inflammatory myopathies.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University Kunming 650201, China.
Lithocarpus litseifolius is rich in the chalcones phloridzin and trilobatin, the biosynthesis pathways of which have not been fully demonstrated. Chalcone synthase(CHS) is the first key rate-limiting enzyme in the biosynthesis of flavonoids in plants. To explore the functions of CHS gene family in chalcone synthesis of L.
View Article and Find Full Text PDFVirus Evol
November 2024
Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
Hypermutated proviruses, which arise in a single Human Immunodeficiency Virus (HIV) replication cycle when host antiviral APOBEC3 proteins introduce extensive guanine to adenine mutations throughout the viral genome, persist in all people living with HIV receiving antiretroviral therapy (ART). However, hypermutated sequences are routinely excluded from phylogenetic trees because their extensive mutations complicate phylogenetic inference, and as a result, we know relatively little about their within-host evolutionary origins and dynamics. Using >1400 longitudinal single-genome-amplified HIV sequences isolated from six women over a median of 18 years of follow-up-including plasma HIV RNA sequences collected over a median of 9 years between seroconversion and ART initiation, and >500 proviruses isolated over a median of 9 years on ART-we evaluated three approaches for masking hypermutation in nucleotide alignments.
View Article and Find Full Text PDFHeliyon
January 2025
School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.
Dynamic functional connectivity (DFC) has shown promise in the diagnosis of Autism Spectrum Disorder (ASD). However, extracting highly discriminative information from the complex DFC matrix remains a challenging task. In this paper, we propose an ASD classification framework PSA-FCN which is based on time-aligned DFC and Prob-Sparse Self-Attention to address this problem.
View Article and Find Full Text PDFNPJ 2D Mater Appl
January 2025
School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin, Ireland.
Thin films fabricated from solution-processed graphene nanosheets are of considerable technological interest for a wide variety of applications, such as transparent conductors, supercapacitors, and memristors. However, very thin printed films tend to have low conductivity compared to thicker ones. In this work, we demonstrate a simple layer-by-layer deposition method which yields thin films of highly-aligned, electrochemically-exfoliated graphene which have low roughness and nanometer-scale thickness control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!