Pathological gambling (PG) shares clinical characteristics with substance-use disorders and is thus discussed as a behavioral addiction. Recent neuroimaging studies on PG report functional changes in prefrontal structures and the mesolimbic reward system. While an imbalance between these structures has been related to addictive behavior, whether their dysfunction in PG is reflected in the interaction between them remains unclear. We addressed this question using functional connectivity resting-state fMRI in male subjects with PG and controls. Seed-based functional connectivity was computed using two regions-of-interest, based on the results of a previous voxel-based morphometry study, located in the prefrontal cortex and the mesolimbic reward system (right middle frontal gyrus and right ventral striatum). PG patients demonstrated increased connectivity from the right middle frontal gyrus to the right striatum as compared to controls, which was also positively correlated with nonplanning aspect of impulsiveness, smoking and craving scores in the PG group. Moreover, PG patients demonstrated decreased connectivity from the right middle frontal gyrus to other prefrontal areas as compared to controls. The right ventral striatum demonstrated increased connectivity to the right superior and middle frontal gyrus and left cerebellum in PG patients as compared to controls. The increased connectivity to the cerebellum was positively correlated with smoking in the PG group. Our results provide further evidence for alterations in functional connectivity in PG with increased connectivity between prefrontal regions and the reward system, similar to connectivity changes reported in substance use disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868704 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084565 | PLOS |
Background: Accumulating evidence highlights impairment of autophagy as a key pathological feature of neurodegenerative diseases including Alzheimer's disease (AD). Autophagy is a highly dynamic, lysosome-based degradation process that promotes the clearance of degenerative factors to maintain cellular functions, preserve metabolic integrity, and ensure survival. Impaired autophagic function leads to the abnormal accumulation of autophagic vesicles (i.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Background: Recruiting and retaining older adults for clinical trials is challenging, especially in low-resource settings. Such challenges led to a systematic exclusion of such participants from clinical trials, compromising the generalizability of the results obtained in high income countries.
Objective: Here we describe the strategies we used in the PROAME study for recruiting and retaining illiterate older adults from low socioeconomical levels in a non-pharmacological trial.
Background: Early-onset Alzheimer's disease (EOAD) associated with amyloid precursor protein (APP) duplications or presenilin (PSEN) variants increases risk of seizures. Targeting epileptiform activity with antiseizure medicine (ASM) administration to AD patients may beneficially attenuate cognitive decline (Vossel et al, JAMA Neurology 2021). However, whether mechanistically distinct ASMs differentially suppress seizures in discrete EOAD models is understudied (Lehmann et al, Neurochem Res 2021).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: Cognitive decline associated with Alzheimer's disease (AD) correlates with hyperphosphorylated tau (pTau) propagating between neurons along networks connected by synapses. It has been hypothesized this transcellular transmission occurs partially by extracellular vesicles (EVs). Both genetic and pharmacological inhibition of nSMase2 has been found to inhibit EV biogenesis and pTau propagation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
Background: Aging associates with decreased functional connectivity between brain regions linked to musical rhythm perception. Producing rhythmic music may result in strengthened functional connectivity of these regions, but more evidence is needed to support intervention design. Currently, few studies directly contrast younger and older adults' rhythmic music performance to understand brain-behavior relationships.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!