When local extinction and colonization of river fishes can be predicted by regional occupancy: the role of spatial scales.

PLoS One

Department of Hydrosystems and Bioprocesses Research Unit, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture, Antony, France.

Published: October 2014

Background: Predicting which species are likely to go extinct is perhaps one of the most fundamental yet challenging tasks for conservation biologists. This is particularly relevant for freshwater ecosystems which tend to have the highest proportion of species threatened with extinction. According to metapopulation theories, local extinction and colonization rates of freshwater subpopulations can depend on the degree of regional occupancy, notably due to rescue effects. However, relationships between extinction, colonization, regional occupancy and the spatial scales at which they operate are currently poorly known.

Methods: And Findings: We used a large dataset of freshwater fish annual censuses in 325 stream reaches to analyse how annual extinction/colonization rates of subpopulations depend on the regional occupancy of species. For this purpose, we modelled the regional occupancy of 34 fish species over the whole French river network and we tested how extinction/colonization rates could be predicted by regional occupancy described at five nested spatial scales. Results show that extinction and colonization rates depend on regional occupancy, revealing existence a rescue effect. We also find that these effects are scale dependent and their absolute contribution to colonization and extinction tends to decrease from river section to larger basin scales.

Conclusions: In terms of management, we show that regional occupancy quantification allows the evaluation of local species extinction/colonization dynamics and reduction of local extinction risks for freshwater fish species implies the preservation of suitable habitats at both local and drainage basin scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867478PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084138PLOS

Publication Analysis

Top Keywords

regional occupancy
32
extinction colonization
16
local extinction
12
spatial scales
12
regional
8
predicted regional
8
occupancy
8
colonization rates
8
subpopulations depend
8
freshwater fish
8

Similar Publications

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Epidemiology and clinical features of childhood malignant solid tumors in a single center in southwest China over 24 years.

BMC Pediatr

January 2025

Department of Urology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, P.R. China.

Objective: This study aims to analyze the epidemiological characteristics and clinical features of childhood malignant solid tumors in a single center in southwest China, thereby providing a reliable basis for formulating prevention and control strategies and rational allocation of resources for these tumors.

Methods: Children less than 15 years old and under-diagnosed with malignant solid tumors for the first time at Children's Hospital of Chongqing Medical University (Children's Medical Center of Southwest China) from 2000 to 2023 were selected. They were classified according to the International Classification of Childhood Cancer, Third Edition (ICCC-3).

View Article and Find Full Text PDF

Binding of transcription factors (TFs) at gene regulatory elements controls cellular epigenetic state and gene expression. Current genome-wide chromatin profiling approaches have inherently limited resolution, complicating assessment of TF occupancy and co-occupancy, especially at individual alleles. In this work, we introduce Accessible Chromatin by Cytosine Editing Site Sequencing with ATAC-seq (ACCESS-ATAC), which harnesses a double-stranded DNA cytosine deaminase (Ddd) enzyme to stencil TF binding locations within accessible chromatin regions.

View Article and Find Full Text PDF

Introductory Analysis and Validation of CUT&RUN Sequencing Data.

J Vis Exp

December 2024

Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center; Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center;

The CUT&RUN technique facilitates detection of protein-DNA interactions across the genome. Typical applications of CUT&RUN include profiling changes in histone tail modifications or mapping transcription factor chromatin occupancy. Widespread adoption of CUT&RUN is driven, in part, by technical advantages over conventional ChIP-seq that include lower cell input requirements, lower sequencing depth requirements, and increased sensitivity with reduced background signal due to a lack of cross-linking agents that otherwise mask antibody epitopes.

View Article and Find Full Text PDF

Altered 3D genome reorganization mediates precocious myeloid differentiation of aged hematopoietic stem cells in inflammation.

Sci China Life Sci

December 2024

Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.

Inflammation is a driving force of hematopoietic stem cells (HSCs) aging, causing irreversible exhaustion of functional HSCs. However, the underlying mechanism of HSCs erosion by inflammatory insult remains poorly understood. Here, we find that transient LPS exposure primes aged HSCs to undergo accelerated differentiation at the expense of self-renewal, leading to depletion of HSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!