Variance in brain volume with advancing age: implications for defining the limits of normality.

PLoS One

Brain Research Imaging Centre (BRIC), The University of Edinburgh, Neuroimaging Sciences, Western General Hospital, Edinburgh, United Kingdom ; Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) collaboration, Edinburgh, United Kingdom.

Published: October 2014

Background: Statistical models of normal ageing brain tissue volumes may support earlier diagnosis of increasingly common, yet still fatal, neurodegenerative diseases. For example, the statistically defined distribution of normal ageing brain tissue volumes may be used as a reference to assess patient volumes. To date, such models were often derived from mean values which were assumed to represent the distributions and boundaries, i.e. percentile ranks, of brain tissue volume. Since it was previously unknown, the objective of the present study was to determine if this assumption was robust, i.e. whether regression models derived from mean values accurately represented the distributions and boundaries of brain tissue volume at older ages.

Materials And Methods: We acquired T1-w magnetic resonance (MR) brain images of 227 normal and 219 Alzheimer's disease (AD) subjects (aged 55-89 years) from publicly available databanks. Using nonlinear regression within both samples, we compared mean and percentile rank estimates of whole brain tissue volume by age.

Results: In both the normal and AD sample, mean regression estimates of brain tissue volume often did not accurately represent percentile rank estimates (errors=-74% to 75%). In the normal sample, mean estimates generally underestimated differences in brain volume at percentile ranks below the mean. Conversely, in the AD sample, mean estimates generally underestimated differences in brain volume at percentile ranks above the mean. Differences between ages at the 5(th) percentile rank of normal subjects were ~39% greater than mean differences in the AD subjects.

Conclusions: While more data are required to make true population inferences, our results indicate that mean regression estimates may not accurately represent the distributions of ageing brain tissue volumes. This suggests that percentile rank estimates will be required to robustly define the limits of brain tissue volume in normal ageing and neurodegenerative disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868601PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084093PLOS

Publication Analysis

Top Keywords

brain tissue
32
tissue volume
20
percentile rank
16
brain volume
12
normal ageing
12
ageing brain
12
tissue volumes
12
percentile ranks
12
rank estimates
12
brain
11

Similar Publications

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Non-communicable diseases (NCD) are associated with inflammation and oxidative stress which is further associated with omega-6 (ω6) and omega-3 (ω3) fatty acid (FA) imbalance favoring ω6 FA. By improving ω3 FA consumption, this imbalance can be altered to control NCD. Previously we have reported blends of flaxseed oil (FSO, ω3 FA) with palm olein (PO) or coconut oil (CO) were thermo-oxidatively stable with good storage stability and could improve ω6:ω3 ratio in cell lines.

View Article and Find Full Text PDF

Background: Immunosenescence is the aging of the immune system, which is closely related to the development and prognosis of lung cancer. Targeting immunosenescence is considered a promising therapeutic approach.

Methods: We defined an immunosenescence gene set (ISGS) and examined it across 33 TCGA tumor types and 29 GTEx normal tissues.

View Article and Find Full Text PDF

Pericytes in Glioblastoma: Hidden Regulators of Tumor Vasculature and Therapy Resistance.

Cancers (Basel)

December 2024

Research Group on Tumors of the Central Nervous System, Pathology Department, University of Valencia, 46010 Valencia, Spain.

Glioblastoma IDH wild type (GB), the most common malignant primary brain tumor, is characterized by rapid proliferation, extensive infiltration into surrounding brain tissue, and significant resistance to current therapies. Median survival is only 15 months despite extensive clinical efforts. The tumor microenvironment (TME) in GB is highly specialized, supporting the tumor's aggressive behavior and its ability to evade conventional treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!