Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite.

PLoS Pathog

Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America ; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America.

Published: September 2014

Toxoplasma gondii resides in an intracellular compartment (parasitophorous vacuole) that excludes transmembrane molecules required for endosome-lysosome recruitment. Thus, the parasite survives by avoiding lysosomal degradation. However, autophagy can re-route the parasitophorous vacuole to the lysosomes and cause parasite killing. This raises the possibility that T. gondii may deploy a strategy to prevent autophagic targeting to maintain the non-fusogenic nature of the vacuole. We report that T. gondii activated EGFR in endothelial cells, retinal pigment epithelial cells and microglia. Blockade of EGFR or its downstream molecule, Akt, caused targeting of the parasite by LC3(+) structures, vacuole-lysosomal fusion, lysosomal degradation and killing of the parasite that were dependent on the autophagy proteins Atg7 and Beclin 1. Disassembly of GPCR or inhibition of metalloproteinases did not prevent EGFR-Akt activation. T. gondii micronemal proteins (MICs) containing EGF domains (EGF-MICs; MIC3 and MIC6) appeared to promote EGFR activation. Parasites defective in EGF-MICs (MIC1 ko, deficient in MIC1 and secretion of MIC6; MIC3 ko, deficient in MIC3; and MIC1-3 ko, deficient in MIC1, MIC3 and secretion of MIC6) caused impaired EGFR-Akt activation and recombinant EGF-MICs (MIC3 and MIC6) caused EGFR-Akt activation. In cells treated with autophagy stimulators (CD154, rapamycin) EGFR signaling inhibited LC3 accumulation around the parasite. Moreover, increased LC3 accumulation and parasite killing were noted in CD154-activated cells infected with MIC1-3 ko parasites. Finally, recombinant MIC3 and MIC6 inhibited parasite killing triggered by CD154 particularly against MIC1-3 ko parasites. Thus, our findings identified EGFR activation as a strategy used by T. gondii to maintain the non-fusogenic nature of the parasitophorous vacuole and suggest that EGF-MICs have a novel role in affecting signaling in host cells to promote parasite survival.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868508PMC
http://dx.doi.org/10.1371/journal.ppat.1003809DOI Listing

Publication Analysis

Top Keywords

parasitophorous vacuole
12
parasite killing
12
egfr-akt activation
12
mic3 mic6
12
parasite
9
killing parasite
8
lysosomal degradation
8
maintain non-fusogenic
8
non-fusogenic nature
8
egf-mics mic3
8

Similar Publications

Article Synopsis
  • The obligate intracellular parasite replicates within a compartment called the parasitophorous vacuole (PV) and utilizes a protein ingestion pathway to take in nutrients from the host cell's cytosol, initiated by the protein GRA14.
  • A genome-wide CRISPR screen revealed that mutants lacking components of this ingestion pathway (GRA14, CPL, or CRT) are forced to rely more on alternative metabolic pathways to survive, such as pyrimidine and fatty acid biosynthesis.
  • Analysis showed that these ingestion-deficient mutants had lower levels of key nutrients and growth defects when amino acids were scarce, indicating that the ingestion pathway plays a crucial role in nutrient acquisition during resource-limited conditions.
View Article and Find Full Text PDF

Human liver organoids are susceptible to Plasmodium vivax infection.

Malar J

December 2024

Siriraj Integrative Center for Neglected Parasitic Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.

Background: The eradication of Plasmodium vivax malaria is complicated due to the presence of hypnozoites, the hidden dormant form of the parasite that is present in the liver. Currently available drug regimens are effective at killing hypnozoites but cause side effects and are difficult to administer. Studies testing drugs for liver-stage malaria remain rare and mainly rely on the use of cancerous or immortalized hepatic cells and primary hepatocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmodium, the parasite that causes malaria, first infects liver cells (hepatocytes) before causing symptoms during the blood stage of infection, residing in a specialized compartment called the parasitophorous vacuole (PV).
  • The study focuses on how the host's autophagy processes and a specific transcription factor, TFEB, play crucial roles in the development of Plasmodium's liver stages.
  • Researchers discovered that certain ATG8 family proteins, particularly GABARAP, help recruit a complex (FLCN-FNIP) that inhibits TFEB, and that blocking this complex activates TFEB, revealing new details about the interaction between the parasite and host cell signaling during the liver infection phase
View Article and Find Full Text PDF

Dense granule protein 41 of Neospora caninum modulates tachyzoite egress by regulating microneme secretion.

Parasitol Res

November 2024

National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.

Egress represents a crucial process employed by Neospora caninum in the establishment of infection. Dense granule proteins (GRAs), secreted by the dense granule, play significant roles in modifying the parasitophorous vacuole, maintenance of morphology, and regulating host-cell interactions. However, their precise involvement in tachyzoite egress remains inadequately characterized.

View Article and Find Full Text PDF

Intracellular parasites, including and , are entirely reliant on the active scavenging of host-derived nutrients to fuel their replicative cycle, as they are confined within a specialized membrane-bound compartment, the parasitophorous vacuole (PV). Initial observations, based on the proximity of host vesicles to the parasitophorous vacuole membrane (PVM), suggested that parasites utilize host vesicles to obtain essential nutrients. However, mounting evidence has now unequivocally demonstrated that intracellular pathogens establish membrane contacts with host organelles, establishing control over host cellular machinery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!