Intrahypothalamic connections of the lateral (LHA), ventromedial (VMH), dorsomedial (DMH) and paraventricular (PVN) hypothalamic nuclei were studied with anterograde transport of iontophoretically injected Phaseolus vulgaris leuco-agglutinin and the immunocytochemical detection of labeled structures. The LHA was found to give rise to a minor projection in the VMH, whereas the VMH in reverse maintains few connections with the ventromedial part of the tuberal LHA. Tracer deposits in both the LHA and VMH resulted in anterograde terminal labeling in the DMH. The DMH, in turn, donates a small number of projections to the LHA and VMH. The main projection of the DMH is aimed at the parvocellular paraventricular nucleus. Direct outflow pathways from the VMH to the PVN were not found, but lectin injections in the LHA on the other hand gave rise to terminal labeling in both the parvocellular and magnocellular divisions of the PVN. The PVN in turn was found to give only minor reciprocal projections to the LHA, DMH and VMH. These findings indicate that the main stream of connections in the hypothalamus runs from the LHA and VMH to the DMH, and from the DMH to the PVN. The identified circuitry patterns were discussed with respect to the role of the hypothalamus in the control of homeostasis and metabolic regulation, and more specifically in relation to the modulation of the hormone release from the pancreas and adrenal glands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0361-9230(87)90190-0 | DOI Listing |
Neurosci Lett
May 2023
Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey.
Monoaminergic systems are known to be involved in the pathophysiology of neuropsychiatric disorders and vegetative functions due to their established influence on hypothalamic and subcortical areas. These systems can be modulated by lifestyle factors, especially exercise, which is known to produce several beneficial effects on reproduction, brain health, and mental disorders. The fact that exercise is sensed by the brain shows that muscle-stimulated secretion of myokines allows direct crosstalk between the muscles and the brain.
View Article and Find Full Text PDFCurr Biol
July 2022
Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China. Electronic address:
Dissecting neural connectivity patterns within local brain regions is an essential step to understanding the function of the brain. Neural microcircuits in brain regions, such as the neocortex and the hippocampus, have been extensively studied. By contrast, the microcircuit in the hypothalamus remains largely uncharacterized.
View Article and Find Full Text PDFInt J Endocrinol
August 2020
The First Affiliated Hospital of Henan University, Kaifeng 475001, China.
Spexin (SPX, NPQ), a novel endogenous neuropeptide, was firstly identified by bioinformatics. Spexin gene and protein widely distributed in the central nervous system and peripheral tissues, such as the hypothalamus and digestive tract. The role of spexin in appetite regulation in mammalian is still unclear.
View Article and Find Full Text PDFThe lateral hypothalamus (LHA) is a central hub in the regulation of food intake and metabolism, as it integrates homeostatic and hedonic circuits. During early development, maturing input to and output from the LHA might be particularly sensitive to environmental dietary changes. We examined the effects of a maternal high fat diet (HFD, 60% Kcal in fat) on the density of hypothalamic projections to the orexin (ORX-A) field of the LHA in 10 day-old (PND10) rat pups using retrograde labeling with fluorescent microspheres.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
June 2019
Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
Aims: Metabolic dysfunction is involved in modulating the disease process in Huntington disease (HD) but the underlying mechanisms are not known. The aim of this study was to investigate if the metabolic regulators sirtuins are affected in HD.
Methods: Quantitative real-time polymerase chain reactions were used to assess levels of SIRT1-3 and downstream targets in post mortem brain tissue from HD patients and control cases as well as after selective hypothalamic expression of mutant huntingtin (HTT) using recombinant adeno-associated viral vectors in mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!