Backbone and side chain NMR assignments for the N-terminal domain of the cell division regulator MinC from Bacillus subtilis.

Biomol NMR Assign

Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.

Published: April 2015

Bacterial cell division proteins must assemble at the middle of the cell to ensure the viability of both daughter cells. The first step in the assembly of the cell division apparatus is the polymerization of the tubulin-like protein FtsZ into a ring-shaped scaffold, the Z-ring. The Min system contributes to the spatial precision of division by inhibiting FtsZ polymerization at the cell poles. The component of this system that interacts with FtsZ is MinC, a 25 kDa protein that has two domains. The N-terminal domain of MinC is the main responsible for FtsZ inhibition, being sufficient to block Z-ring assembly when overexpressed in vivo, and to inhibit FtsZ polymerization in vitro. Despite intensive studies, little is known about the MinC binding site for FtsZ. We have assigned the backbone and side chain resonances of the MinC N-terminal domain of Bacillus subtilis through NMR spectroscopy. These assignments provide the basis to characterize the interaction between the N-terminal domain of MinC and FtsZ by NMR methods.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12104-013-9534-yDOI Listing

Publication Analysis

Top Keywords

n-terminal domain
16
cell division
12
backbone side
8
side chain
8
bacillus subtilis
8
ftsz polymerization
8
domain minc
8
ftsz
7
minc
6
cell
5

Similar Publications

The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA).

View Article and Find Full Text PDF

Treponema denticola major surface protein (Msp): a key player in periodontal pathogenicity and immune evasion.

Arch Microbiol

January 2025

Department of Stomatology, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.

Treponema denticola, a bacterium that forms a "red complex" with Porphyromonas gingivalis and Tannerella forsythia, is associated with periodontitis, pulpitis, and other oral infections. The major surface protein (Msp) is a surface glycoprotein with a relatively well-established overall domain structure (N-terminal, central and C-terminal regions) and a controversial tertiary structure. As one of the key virulence factors of T.

View Article and Find Full Text PDF

Biallelic mutations in multiple EGF domain protein 10 (MEGF10) gene cause EMARDD (early myopathy, areflexia, respiratory distress and dysphagia) in humans, a severe recessive myopathy, associated with reduced numbers of PAX7 positive satellite cells. To better understand the role of MEGF10 in satellite cells, we overexpressed human MEGF10 in mouse H-2k-tsA58 myoblasts and found that it inhibited fusion. Addition of purified extracellular domains of human MEGF10, with (ECD) or without (EGF) the N-terminal EMI domain to H-2k-tsA58 myoblasts, showed that the ECD was more effective at reducing myoblast adhesion and fusion by day 7 of differentiation, yet promoted adhesion of myoblasts to non-adhesive surfaces, highlighting the importance of the EMI domain in these behaviours.

View Article and Find Full Text PDF

Enterococcus faecalis is a multi-drug-resistant human pathogen that is found in a variety of environments and is challenging to treat. Under stress conditions, some bacteria regulate intracellular polyamine concentrations via polyamine acetyltransferases to reduce their toxicity. The E.

View Article and Find Full Text PDF

The SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are evolutionarily conserved, ATP-dependent chromatin remodelers crucial for multiple nuclear functions in eukaryotes. Recently, plant BCL-DOMAIN HOMOLOG (BDH) proteins were identified as shared subunits of all plant SWI/SNF complexes, significantly impacting chromatin accessibility and various developmental processes in Arabidopsis. In this study, we performed a comprehensive characterization of mutants, revealing the role of BDH in hypocotyl cell elongation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!