Purpose: Automatic segmentation of the retinal vasculature is a first step in computer-assisted diagnosis and treatment planning. The extraction of retinal vessels in pediatric retinal images is challenging because of comparatively wide arterioles with a light streak running longitudinally along the vessel's center, the central vessel reflex. A new method for automatic segmentation was developed and tested.
Method: A supervised method for retinal vessel segmentation in the images of multi-ethnic school children was developed based on ensemble classifier of bootstrapped decision trees. A collection of dual Gaussian, second derivative of Gaussian and Gabor filters, along with the generalized multiscale line strength measure and morphological transformation is used to generate the feature vector. The feature vector encodes information to handle the normal vessels as well as the vessels with the central reflex. The methodology is evaluated on CHASE_DB1, a relatively new public retinal image database of multi-ethnic school children, which is a subset of retinal images from the Child Heart and Health Study in England (CHASE) dataset.
Results: The segmented retinal images from the CHASE_DB1 database produced best case accuracy, sensitivity and specificity of 0.96, 0.74 and 0.98, respectively, and worst case measures of 0.94, 0.67 and 0.98, respectively.
Conclusion: A new retinal blood vessel segmentation algorithm was developed and tested with a shared database. The observed accuracy, speed, robustness and simplicity suggest that the algorithm may be a suitable tool for automated retinal image analysis in large population-based studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11548-013-0965-9 | DOI Listing |
Front Aging Neurosci
January 2025
Department of Neurology, West China Hospital of Sichuan University, Chengdu, China.
Purpose: Differentiating between Alzheimer's disease (AD) and frontotemporal dementia (FTD) can be challenging due to overlapping cognitive and behavioral manifestations. Evidence regarding non-invasive and early-stage biomarkers remains limited. Our aim was to identify retinal biomarkers for the risk of AD and FTD in populations without dementia and explore underlying brain structural mechanisms.
View Article and Find Full Text PDFIEEE Trans Instrum Meas
May 2024
School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China.
Automatic retinal layer segmentation with medical images, such as optical coherence tomography (OCT) images, serves as an important tool for diagnosing ophthalmic diseases. However, it is challenging to achieve accurate segmentation due to low contrast and blood flow noises presented in the images. In addition, the algorithm should be light-weight to be deployed for practical clinical applications.
View Article and Find Full Text PDFClin Ophthalmol
January 2025
University Eye Clinic Maastricht, Maastricht, the Netherlands.
Purpose: This study aims to explore the diagnostic utility of ultrasound B-scan while introducing the "Triangle" sign as a novel indicator. It also validates the sign's efficacy in distinguishing between choroidal detachment (CD) and suprachoroidal hemorrhage (SCH) from retinal detachment (RD) and vitreous hemorrhage (VH).
Patients And Methods: Retrospective analysis of consecutive cases of total CD and SCH undergoing B-scan at a single tertiary imaging center.
Ophthalmol Sci
November 2024
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland.
Objective: To propose Deep-RPD-Net, a 3-dimensional deep learning network with semisupervised learning (SSL) for the detection of reticular pseudodrusen (RPD) on spectral-domain OCT scans, explain its decision-making, and compare it with baseline methods.
Design: Deep learning model development.
Participants: Three hundred fifteen participants from the Age-Related Eye Disease Study 2 Ancillary OCT Study (AREDS2) and 161 participants from the Dark Adaptation in Age-related Macular Degeneration Study (DAAMD).
Ophthalmic Physiol Opt
January 2025
Robert O Curle Ophthalmology Suite, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
Purpose: To determine whether imaging features derived from fundus photographs contain 3D eye shape information beyond that available from spherical equivalent refraction (SER).
Methods: We analysed 99 eyes of 68 normal adults in the UK Biobank. An ellipsoid was fitted to the entire volume of each posterior eye (vitreous chamber without the lens)-segmented from magnetic resonance imaging of the brain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!