Mechanical ventilation can cause structural and functional disturbances in the lung termed ventilator-induced lung injury (VILI). The aim of this study was to evaluate whether BML-111, a lipoxin receptor agonist, could attenuate VILI. Following induction of anesthesia and tracheostomy, Sprague-Dawley rats were ventilated with low tidal volume (6 mL/kg) or high tidal volume (20 mL/kg, HVT) for 4 h. Some rats subjected to HVT ventilation received BML-111 or vehicle (saline) by intraperitoneal injection. Some rats subjected to HVT and BML-111(1 mg/kg) received BOC-2 (a FPR2/ALX antagonist) intraperitoneally 30 min before BML-111. Sham rats were tracheotomized without ventilation. Treatment with BML-111 attenuated VILI, as evidenced by improved oxygenation and reduced histological injury compared with HVT-induced lung injury. BML-111 decreased indices of inflammation such as interleukin 1β, interleukin 6, tumor necrosis factor α, and bronchoalveolar lavage neutrophil infiltration. Administration with BML-111 suppressed the decrement of the nuclear factor κB (NF-κB) inhibitor IκB-α, diminished NF-κB activation, and reduced activation of mitogen-activated protein kinase in VILI. This study indicates that BML-111 attenuated VILI via a NF-κB and mitogen-activated protein kinase dependent mechanism. BML-111 may be a promising strategy for alleviation of VILI in patients subjected to mechanical ventilation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SHK.0000000000000104 | DOI Listing |
Spinal Cord
January 2025
McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
Study Design: Experimental Animal Study.
Objective: To continue validating an antibody which targets an epitope of neurofilament light chain (NF-L) only available during neurodegeneration and to utilize the antibody to describe the pattern of axonal degeneration 10 days post-unilateral C4 contusion in the rat.
Setting: University of Florida laboratory in Gainesville, USA.
J Cyst Fibros
January 2025
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA. Electronic address:
Background: Adult people with cystic fibrosis (PwCF) have a higher risk of end-stage kidney disease than the general population. The nature and mechanism of kidney disease in CF are unknown. This study quantifies urinary kidney injury markers and examines the hypothesis that neutrophil activation and lung infection are associated with early kidney injury in CF.
View Article and Find Full Text PDFBMJ Open
January 2025
Clinical and Research Center on Acute Lung Injury, Beijing Shijitan Hospital Capital Medical University, Beijing, Beijing, China
Objectives: The purpose of this study was to evaluate the predictive value of the cough peak flow (CPF) for successful extubation in postcraniotomy critically ill patients.
Design: This was a single-centre prospective diagnostic study.
Setting: The study was conducted in three intensive care units (ICUs) of a teaching hospital.
Cell Rep Med
December 2024
Capital Institute of Pediatrics, Beijing 100020, China. Electronic address:
We have previously reported that high-alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the gut can cause endo-alcoholic fatty liver disease. Here, we discover that 91.2% of Kpn isolates from pulmonary disease samples also produce excess ethanol, which may be associated with respiratory disease severity.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China. Electronic address:
Exposure of PM2.5 can cause different degrees of lung injury, which is referred with inflammatory response. Some evidences showed that low-dose radiation (LDR) induces hormesis in immune, however, it is unknown if LDR ameliorates the PM2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!