Background: Pulmonary ischemia-reperfusion (IR)-induced lung injury is a severe complication that increases the likelihood of primary graft dysfunction and early death after lung transplantation. Inflammatory cytokine release and cell death play a critical role in the development of IR-induced lung injury. α1-Antitrypsin (A1AT) is a protease inhibitor clinically used for the treatment of A1AT-deficiency emphysema. On the basis of a literature review, we hypothesize that A1AT may have the potential to reduce IR-induced lung injury through its anti-inflammatory and anti-apoptotic effects.
Methods: A human pulmonary cell culture model was used to simulate IR processes in lung transplantation. Effects of A1AT on cell death and cytokine production were examined. A rat pulmonary IR model, in which the left pulmonary hilum was clamped for 90 minutes, followed by reperfusion for 2 hours, was used to determine the effects of A1AT on acute lung injury, function, cell death, and inflammatory response.
Results: A1AT significantly inhibited cell death and inflammatory cytokine release dose-dependently in vitro and significantly improved lung oxygenation and lung mechanics and reduced pulmonary edema in vivo. Moreover, A1AT inhibited neutrophil infiltration in the lung and reduced cell death and significantly reduced IR-induced inflammatory mediators in plasma, including interleukin (IL)-1α, IL-4, IL-12p70, monocyte chemotactic protein 1, and tumor necrosis factor-α.
Conclusions: Considering its current clinical use, our findings indicate that administration of A1AT may be an effective and safe therapy for the treatment of IR injury in human lung transplantation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.healun.2013.10.031 | DOI Listing |
Curr Oncol Rep
January 2025
Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 111 East 210Th Street, Bronx, NY, 10461, USA.
Purpose Of Review: This paper reviewed the current literature on incidence, clinical manifestations, and risk factors of Chimeric Antigen Receptor T-cell (CAR-T) cardiotoxicity.
Recent Findings: CAR-T therapy has emerged as a groundbreaking treatment for hematological malignancies since FDA approval in 2017. CAR-T therapy is however associated with a few side effects, among which cardiotoxicity is of significant concern.
Discov Oncol
January 2025
Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-46, Tamil Nadu, India.
Background: Electromagnetic radiation (EMR) from wireless technology and mobile phones, operates at various frequencies. The present study analyses the major impact of short-term exposure to 2.4 GHz frequency EMR, using the two model systems chick embryos and SH-SY5Y cell lines.
View Article and Find Full Text PDFSleep Breath
January 2025
Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.
View Article and Find Full Text PDFMol Genet Genomics
January 2025
Department of Emergency, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
Acute kidney injury (AKI) is one of the most serious and common complications in the course of sepsis, known for its poor prognosis and high mortality rate. Recently, ferroptosis, as a newly discovered regulatory cell death, might be closely associated with the progression of AKI. METTL14 is a writer of RNA m6A, an abundant epigenetic modification in transcriptome with broad function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!