A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

miR-200c and GATA binding protein 4 regulate human embryonic stem cell renewal and differentiation. | LitMetric

miR-200c and GATA binding protein 4 regulate human embryonic stem cell renewal and differentiation.

Stem Cell Res

Genomics Research Center, Academia Sinica, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; National RNAi Platform/National Core Facility Program for Biotechnology, Taipei, Taiwan; Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan; Genomics and System Biology Program, College of Life Science, National Taiwan University, Taipei, Taiwan. Electronic address:

Published: March 2014

Human embryonic stem cells (hESCs) are functionally unique for their self-renewal ability and pluripotency, but the molecular mechanisms giving rise to these properties are not fully understood. hESCs can differentiate into embryoid bodies (EBs) containing ectoderm, mesoderm, and endoderm. In the miR-200 family, miR-200c was especially enriched in undifferentiated hESCs and significantly downregulated in EBs. The knockdown of the miR-200c in hESCs downregulated Nanog expression, upregulated GATA binding protein 4 (GATA4) expression, and induced hESC apoptosis. The knockdown of GATA4 rescued hESC apoptosis induced by downregulation of miR-200c. miR-200c directly targeted the 3'-untranslated region of GATA4. Interestingly, the downregulation of GATA4 significantly inhibited EB formation in hESCs. Overexpression of miR-200c inhibited EB formation and repressed the expression of ectoderm, endoderm, and mesoderm markers, which could partially be rescued by ectopic expression of GATA4. Fibroblast growth factor (FGF) and activin A/nodal can sustain hESC renewal in the absence of feeder layer. Inhibition of transforming growth factor-β (TGF-β[Symbol: see text])/activin A/nodal signaling by SB431542 treatment downregulated the expression of miR-200c. Overexpression of miR-200c partially rescued the expression of Nanog/phospho-Smad2 that was downregulated by SB431542 treatment. Our observations have uncovered novel functions of miR-200c and GATA4 in regulating hESC renewal and differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2013.11.009DOI Listing

Publication Analysis

Top Keywords

mir-200c
9
gata binding
8
binding protein
8
human embryonic
8
embryonic stem
8
renewal differentiation
8
hescs downregulated
8
hesc apoptosis
8
inhibited formation
8
overexpression mir-200c
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!