The monitoring of the radioactive xenon isotopes (131m)Xe, (133)Xe, (133m)Xe, and (135)Xe is important for the detection of nuclear explosions. While backgrounds of the xenon isotopes are short-lived, they are constantly replenished from activities dominated by the fission-based production of (99)Mo used for medical procedures. At present, one of the most critical locations on earth for the monitoring of nuclear explosions is the Korean peninsula where the Democratic People's Republic of Korea (DPRK) has announced that it conducted three nuclear tests between 2006 and 2013. This paper explores the backgrounds that would be caused by the medium to large scale production of (99)Mo in the region of the Korean peninsula.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2013.11.012DOI Listing

Publication Analysis

Top Keywords

xenon isotopes
12
nuclear explosions
8
production 99mo
8
korean peninsula
8
potential impact
4
impact releases
4
releases molybdenum-99
4
molybdenum-99 production
4
production facility
4
facility regional
4

Similar Publications

Purpose: To compare pulmonary function metrics obtained with hyperpolarized xenon-129 (HXe) MRS, using chemical shift saturation recovery (CSSR) and CSI-CSSR, in healthy rats and a rat model of radiation-induced lung injury.

Methods: HXe-MR data were acquired in two healthy rats and one rat with radiation-induced lung injury using whole-lung spectroscopy and CSI-CSSR techniques. The CSI-CSSR acquisitions were performed with both fixed TE and variable TE.

View Article and Find Full Text PDF

Cystic Fibrosis or asthma? Discerning dyspnea with hyperpolarizaed xenon gas magnetic resonance imaging.

Magn Reson Imaging

January 2025

Department of Internal Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA. Electronic address:

Hyperpolarized Xenon MRI (HPG MRI) has been studied for its potential use in assessing lung function in patients with cystic fibrosis (CF) and in patients with asthma. We present a case of a man with overlapping cystic fibrosis and allergic asthma with severe obstructive lung disease in which spirometry and computed topography (CT) imaging was unable to determine the primary cause for his uncontrolled symptoms. HPG MRI was used to guide a tissue biopsy and determine the primary driver to be allergic asthma.

View Article and Find Full Text PDF

Purpose: Hyperpolarized Xe MRI presents opportunities to assess regional pulmonary microstructure and function. Ongoing advancements in hardware, sequences, and image processing have helped it become increasingly adopted for both research and clinical use. As the number of applications and users increase, standardization becomes crucial.

View Article and Find Full Text PDF

Hyperpolarized 129Xe Lung MRI and Spectroscopy in Mechanically Ventilated Mice.

J Vis Exp

October 2024

Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center; Department of Biomedical Engineering, University of Cincinnati; Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center;

Article Synopsis
  • Hyperpolarized xenon-129 (Xe) is a specialized MRI contrast agent that helps measure various aspects of lung function, making it useful for diagnosing and tracking lung diseases in humans.
  • It is approved for clinical use in places like the U.S. and U.K. and offers noninvasive ways to study lung health in preclinical research settings, particularly with mice, which are commonly used in genetic studies.
  • The text outlines practical procedures and checklists for effectively using Xe MRI in animal studies, focusing on ensuring accurate data collection related to lung disease monitoring.
View Article and Find Full Text PDF

Mapping the amplitude and phase of dissolved Xe red blood cell signal oscillations with keyhole spectroscopic lung imaging.

Magn Reson Med

February 2025

POLARIS, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK.

Article Synopsis
  • The study aimed to evaluate the regional amplitude and phase of dissolved Xe red blood cell signal oscillations in lung blood vessels using a new imaging technique and contrast it with older methods that ignore phase differences.
  • Researchers used a 3D imaging method on 37 participants (including healthy individuals and patients with pulmonary issues) to analyze these oscillations, applying a novel keyhole reconstruction technique to correct for phase differences.
  • Results indicated varying degrees of phase differences among different groups, with improved consistency in oscillation amplitude measurements when adjusted for phase, suggesting potential insights into blood flow dynamics in the lungs.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!