Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In order to develop new β-type Ti-based biochemical materials, a series of Ti-10Mo-1.25Si-xZr (x=4-13) alloys were designed and prepared using vacuum arc melting method. Phase analysis and microstructural observation showed that all the as cast samples consisted of equiaxed β-Ti phase. With the increase of Zr content, the structure of grain boundary changed from semi-continuous network to denser granular, and the microstructure was refined. The solid solution effect of the β-phase stabilization elements (i.e. Mo, Zr and Si) predominantly determined the mechanical properties. These β-type Ti-10Mo-1.25Si-xZr biomaterials exhibited a good combination of high compressive strength, high yield stress, good plasticity, as well as rather low Young's modulus (in the range of 23.086 GPa-32.623 GPa), which may offer potential advantages in the applications in hard tissue replacements (HTRs).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2012.04.059 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!