Effect of different modifications of BEA-zeolites on operational characteristics of conductometric biosensor.

Mater Sci Eng C Mater Biol Appl

Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, Zabolotnogo Street 150, 03143 Kyiv, Ukraine; Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, 01601 Kyiv, Ukraine.

Published: August 2012

Effect of different modifications of zeolite Na(+)-BEA on working characteristics of urease-based conductometric biosensor was studied. As the biosensor sensitive elements were used bioselective membranes based on urease and various zeolites immobilised with bovine serum albumin on the surface of conductometric transducers. Influence of zeolites on sensitivity of urea biosensor was investigated as well as reproducibility of biosensor signal and reproducibility of activity of the bioselective element after different variants of urease immobilisation on the surface of conductometric transducer. The biosensors based on zeolites (NH4(+)-BEA 30 and H(+)-BEA 30) were shown to be the most sensitive. Concentration of these zeolites in the bioselective membrane was optimized. Use of zeolites modified with methyl viologen and silver was ascertained to be of no prospect for urea conductometric biosensors. It was demonstrated that characteristics of urea biosensors can be regulated, varying zeolites modifications and their concentrations in bioselective membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2012.04.056DOI Listing

Publication Analysis

Top Keywords

conductometric biosensor
8
bioselective membranes
8
surface conductometric
8
zeolites
6
conductometric
5
biosensor
5
modifications bea-zeolites
4
bea-zeolites operational
4
operational characteristics
4
characteristics conductometric
4

Similar Publications

Paper-Based Sensors: Fantasy or Reality?

Nanomaterials (Basel)

January 2025

Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova.

This article analyzes the prospects for the appearance of paper-based sensors on the sensor market. It is concluded that paper-based sensors are not a fantasy but a reality. It is shown that paper has properties that make it possible to develop a wide variety of paper-based sensors, such as SERS, colorimetric, fluorescent, conductometric, capacitive, fiber-optic, electrochemical, microfluidic, shape-deformation, microwave, and various physical sensors.

View Article and Find Full Text PDF

We describe a conductometric assay of the enzymatic conversion of glucose to gluconic acid by dissolved glucose oxidase (GOx), using the generation of proton and gluconate from the reaction product dissociation for glucose detection. Simple basics of ionic conductivity, a silver/silver chloride wire pair, and a small applied potential translate glucose-dependent GOx activity into a scalable cell current. Enzyme immobilization and complex sensor design, involving extra nanomaterials or microfabrication of electrode structures, are entirely avoided, in contrast to all modern electrochemical glucose biosensors.

View Article and Find Full Text PDF

The present study reports on the development, adaptation, and optimization of a novel monoenzyme conductometric biosensor based on a recombinant arginine deiminase (ADI) for the determination of arginine in dietary supplements with a high accuracy of results. Aiming for the highly sensitive determination of arginine in real samples, we studied the effect of parameters of the working buffer solution (its pH, buffer capacity, ionic strength, temperature, and protein concentration) on the sensitivity of the biosensor to arginine. Thus, it was determined that the optimal buffer is a 5 mM phosphate buffer solution with pH 6.

View Article and Find Full Text PDF

Due to the presence of the boronic acid moieties, poly-3-thienylboronic acid has an affinity for saccharides and other diol-containing compounds. Thin films of this novel chemosensitive polymer were synthesized electrochemically on the gold surface. The adhesion of the polymer was enhanced by the deposition of a monomolecular layer of thiophenol.

View Article and Find Full Text PDF

Versatile conductometric biosensors for rapid and selective detection of inflammatory and cardiac biomarkers in saliva.

Biosens Bioelectron

October 2024

Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia. Electronic address:

Biosensors have become promising alternatives to the conventional methods in early identification of diseases. However, translation of biosensors from lab to commercial products have challenges such as complex sensor fabrications and complicated detection, and inadequate sensitivity and selectivity. Here, we introduce simple and low-cost fabricated conductometric sensors based on high resistivity silicon wafers (HR-Si) which can be adopted to functionalise with both natural and synthetic antibodies in detecting five biomarkers including interleukin-6, C reactive protein, cardiac troponin I, brain natriuretic peptide, and N terminal-probrain natriuretic peptide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!