Differential occupation of axial morphospace.

Zoology (Jena)

Long Marine Lab, Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA.

Published: February 2014

The postcranial system is composed of the axial and appendicular skeletons. The axial skeleton, which consists of serially repeating segments commonly known as vertebrae, protects and provides leverage for movement of the body. Across the vertebral column, much numerical and morphological diversity can be observed, which is associated with axial regionalization. The present article discusses this basic diversity and the early developmental mechanisms that guide vertebral formation and regionalization. An examination of vertebral numbers across the major vertebrate clades finds that actinopterygian and chondrichthyan fishes tend to increase vertebral number in the caudal region whereas Sarcopterygii increase the number of vertebrae in the precaudal region, although exceptions to each trend exist. Given the different regions of axial morphospace that are occupied by these groups, differential developmental processes control the axial patterning of actinopterygian and sarcopterygian species. It is possible that, among a variety of factors, the differential selective regimes for aquatic versus terrestrial locomotion have led to the differential use of axial morphospace in vertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.zool.2013.10.006DOI Listing

Publication Analysis

Top Keywords

axial morphospace
12
axial
7
differential
4
differential occupation
4
occupation axial
4
morphospace postcranial
4
postcranial system
4
system composed
4
composed axial
4
axial appendicular
4

Similar Publications

Programming the elongation of mammalian cell aggregates with synthetic gene circuits.

bioRxiv

December 2024

Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

A key goal of synthetic morphogenesis is the identification and implementation of methods to control morphogenesis. One line of research is the use of synthetic genetic circuits guiding the self-organization of cell ensembles. This approach has led to several recent successes, including control of cellular rearrangements in 3D via control of cell-cell adhesion by user-designed artificial genetic circuits.

View Article and Find Full Text PDF

Sea snakes in the clade (Elapidae) show exceptional body shape variation along a continuum from similar forebody and hindbody girths, to dramatically reduced girths of the forebody relative to hindbody. The latter is associated with specializations on burrowing prey. This variation underpins high sympatric diversity and species richness and is not shared by other marine (or terrestrial) snakes.

View Article and Find Full Text PDF

Form and function in the avian pelvis.

J Morphol

June 2022

Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Los Angeles, USA.

The avian pelvis plays a critical role in the hindlimb function of birds, connecting the hindlimb and axial skeleton and serving as the major attachment site for proximal hindlimb musculature. To assess how diversification of locomotor modes in birds has impacted the evolution of avian pelvic morphology, we conducted a two-dimensional geometric morphometric analysis of bird pelves in dorsal and lateral views from 163 species (n = 261) across Aves. We investigated the relationships among pelvic shape and ecology, phylogeny, and allometry, and conducted disparity analyses to understand how pelvic morphospace has been explored through the diversification of Aves.

View Article and Find Full Text PDF

The closest evolutionary relatives of pterosaurs: What the morphospace occupation of different skeletal regions tell us about lagerpetids.

Anat Rec (Hoboken)

December 2022

Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil.

Exquisite discoveries and new interpretations regarding an enigmatic group of cursorial avemetatarsalians led to a new phylogenetic hypothesis regarding pterosaur affinities. Previously thought to be dinosaur precursors, lagerpetids are now considered to be the closest relatives to pterosaurs. This new hypothesis sheds light on a new explorable field, especially regarding the character acquisition and evolution within the pterosaur lineage.

View Article and Find Full Text PDF

Dyrosauridae is a clade of neosuchian crocodyliforms that diversified in terrestrial and aquatic environments across the Cretaceous-Paleogene transition. The postcranial anatomy of dyrosaurids has long been overlooked, obscuring both their disparity and their locomotive adaptations. Here we thoroughly describe of the postcranial remains of an unusually small dyrosaurid, , from the middle-late Paleocene Cerrejón Formation of Colombia, and we provide a wealth of new data concerning the postcranial anatomy of the key dyrosaurids: and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!