A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling nonlinear time-dependent treatment effects: an application of the generalized time-varying effect model (TVEM). | LitMetric

Objective: The goal of this article is to introduce to social and behavioral scientists the generalized time-varying effect model (TVEM), a semiparametric approach for investigating time-varying effects of a treatment. The method is best suited for data collected intensively over time (e.g., experience sampling or ecological momentary assessments) and addresses questions pertaining to effects of treatment changing dynamically with time. Thus, of interest is the description of timing, magnitude, and (nonlinear) patterns of the effect.

Method: Our presentation focuses on practical aspects of the model. A step-by-step demonstration is presented in the context of an empirical study designed to evaluate effects of surgical treatment on quality of life among early stage lung cancer patients during posthospitalization recovery (N = 59; 61% female, M age = 66.1 years). Frequency and level of distress associated with physical symptoms were assessed twice daily over a 2-week period, providing a total of 1,544 momentary assessments.

Results: Traditional analyses (analysis of covariance [ANCOVA], repeated-measures ANCOVA, and multilevel modeling) yielded findings of no group differences. In contrast, generalized TVEM identified a pattern of the effect that varied in time and magnitude. Group differences manifested after Day 4.

Conclusions: Generalized TVEM is a flexible statistical approach that offers insight into the complexity of treatment effects and allows modeling of nonnormal outcomes. The practical demonstration, shared syntax, and availability of a free set of macros aim to encourage researchers to apply TVEM to complex data and stimulate important scientific discoveries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067470PMC
http://dx.doi.org/10.1037/a0035267DOI Listing

Publication Analysis

Top Keywords

treatment effects
8
generalized time-varying
8
time-varying model
8
model tvem
8
effects treatment
8
group differences
8
generalized tvem
8
treatment
5
effects
5
tvem
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!