Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Highly efficient organic solar cells were successfully demonstrated by incorporating a solution-processed cesium stearate between the photoactive layer and metal cathode as a novel cathode interfacial layer. The analysis of surface potential change indicated the existence of an interfacial dipole between the photoactive layer and metal electrode, which was responsible for the power conversion efficiency (PCE) enhancement of devices. The significant improvement in the device performance and the simple preparation method by solution processing suggested a promising and practical pathway to improve the efficiency of the organic solar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am403829k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!