[Comparisons of sulfur contents and isotopes between mosses and surface soils in Jiangxi Province].

Huan Jing Ke Xue

Environmental and Chemical Engineering College, Nanchang University, Nanchang 330031, China.

Published: October 2013

AI Article Synopsis

  • The study examined how atmospheric sulfur impacts soil sulfur in northern Jiangxi province, using forest soil and moss samples.
  • Moss exhibited an average sulfur content of 0.34%, while soil total sulfur varied widely, from 189.0 to 793.5 mg.kg-1, with organic sulfur being the predominant form.
  • Findings revealed significant correlations between atmospheric sulfur and the various soil sulfur forms, except for organic sulfur, suggesting that atmospheric sulfur influences total, water-soluble, and absorbed sulfur levels in the soil.

Article Abstract

In order to study the influence of atmospheric sulfur on soil sulfur, the forest surface soil samples and moss samples were collected in north areas of Jiangxi province. Contents and isotopes of sulfur in different forms (total sulfur, water-soluble sulfur, absorbed sulfur and organic sulfur) were determined. The average sulfur content of mosses was 0. 34% +/- 0. 20%. All of the delta34S values except at Fengcheng (-3. 31 per thousand) were positive, the average was 5.64 per thousand +/- 2. 23 per thousand. The average contents of soil total sulfur were between 189.0 mg.kg-1 and 793.5 mg.kg-1. The organic sulfur was the main sulfur form in surface soils and the contents of water-soluble sulfur were the lowest. The delta34S values of total sulfur were in the range of 4. 45 per thousand +/-10. 28 per thousand. The highest soil delta34S values were determined for organic sulfur and the delta34S values of water-soluble and absorbed sulfur were similar. The contents of soil total sulfur were much lower than those of the mosses. Except for organic sulfur (R = 0. 50, P >0. 05) , the delta34S values of total sulfur, water-soluble sulfur and absorbed sulfur were all significantly correlated with those of moss sulfur (R >0.7, P <0. 01). These results indicated that atmospheric sulfur directly affected the total sulfur, water-soluble sulfur and absorbed sulfur, but not the organic sulfur.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sulfur
21
total sulfur
20
delta34s values
20
organic sulfur
16
water-soluble sulfur
12
absorbed sulfur
12
sulfur contents
8
contents isotopes
8
surface soils
8
sulfur water-soluble
8

Similar Publications

Nidustrin A, cysteine-retained emestrin with a unique 18-membered macrocyclic lactone from the endophytic fungus Aspergillus nidulans.

Bioorg Chem

December 2024

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China. Electronic address:

Nidustrin A (1), the first cysteine-retained emestrin featuring a unique sulfur-containing 18-membered macrocyclic lactone, along with four biogenetically related compounds (2-5), and one known analogue secoemestrin C (6), were isolated from the large-scale culture of Aspergillus nidulans, an endophytic fungus derived from the Whitmania pigra. Compounds 2 and 3 represent the second examples of noremestrin besides the previously reported noremestrin A, and the single crystal X-ray diffraction analysis of compound 2 provided solid evidence for the intriguing skeleton of noremestrin. Their structures were determined by extensive spectroscopic data, electronic circular dichroism calculations, and single-crystal X-ray diffraction.

View Article and Find Full Text PDF

Nanoparticles play a significant role in enhancing crop yield and reducing nutrient loss through precise nutrient delivery mechanisms. However, it is imperative to ascertain the specific plant physiology altered by these nanoparticles. This study investigates the effects of green-synthesized nanoparticles, specifically boron nitride and sulphur, on sunflower yield, seed quality, and physiological activities.

View Article and Find Full Text PDF

Particle emissions study from tire sample with nano-silver tracer from different steps of its life cycle. A new approach to trace emissions of tire microparticles.

Sci Total Environ

January 2025

Direction Milieux et impacts sur le vivant, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France.

Emissions due to tires retread/repair and incineration are a cause of concern owing to the presence of nanoparticles in the products. The assessment exposure to humans hereto related is a challenge in an environmental context. The first object of this work is to develop a method to characterize the emission sources using online (counting and sizing) and offline measurements.

View Article and Find Full Text PDF

The combined effects of microplastics and their additives on mangrove system: From the sinks to the sources of carbon.

Sci Total Environ

January 2025

College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China. Electronic address:

Mangrove ecosystems, a type of blue carbon ecosystems (BCEs), are vital to the global carbon cycle. However, the combined effects of microplastics (MPs) and plastic additives on carbon sequestration (CS) in mangroves remain unclear. Here, we comprehensively review the sources, occurrence, and environmental behaviors of MPs and representative plastic additives in mangrove ecosystems, including flame retardants, such as polybrominated diphenyl ethers (PBDEs), and plasticizers, such as phthalate esters (PAEs).

View Article and Find Full Text PDF

Acetochlor degradation in anaerobic microcosms with hyporheic sediments: Insights from biogeochemical data, transformation products, and isotope analysis.

Water Res

December 2024

Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, PR China. Electronic address:

Steep redox gradients and diverse microbial communities in the anaerobic hyporheic zone create complex pathways for the degradation of herbicides, often linked to various terminal electron-accepting processes (TEAPs). Identifying the degradation pathways and their controlling factors under various TEAPs is of great significance for understanding mechanisms of water purification in the hyporheic zone. However, current research on herbicides in this area remains insufficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!