X-linked adrenoleukodystrophy (X-ALD) is a fatal neurodegenerative disease caused by mutations in the ABCD1 gene, encoding a member of the peroxisomal ABC transporter family. The ABCD1 protein transports CoA-activated very long-chain fatty acids (VLCFAs) into peroxisomes for degradation via β-oxidation. In the severest form, X-ALD patients suffer from inflammatory demyelination of the brain. As the extent of the metabolic defect in the main immune cells is unknown, we explored their phenotypes concerning mRNA expression pattern of the three peroxisomal ABC transporters, VLCFA accumulation and peroxisomal β-oxidation. In controls, ABCD1 expression was high in monocytes, intermediate in B cells and low in T cells; ABCD2 expression was extremely low in monocytes, intermediate in B cells and highest in T cells; ABCD3 mRNA was equally distributed. In X-ALD patients, the expression patterns remained unaltered; accordingly, monocytes, which lack compensatory VLCFA transport by ABCD2, displayed the severest biochemical phenotype with a 6-fold accumulation of C26:0 and a striking 70% reduction in peroxisomal β-oxidation activity. In contrast, VLCFA metabolism was close to control values in B cells and T cells, supporting the hypothesis that sufficient ABCD2 is present to compensate for ABCD1 deficiency. Thus, the vulnerability of the main immune cell types is highly variable in X-ALD. Based on these results, we propose that in X-ALD the halt of inflammation after allogeneic hematopoietic stem cell transplantation relies particularly on the replacement of the monocyte lineage. Additionally, these findings support the concept that ABCD2 is a target for pharmacological induction as an alternative therapeutic strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990157PMC
http://dx.doi.org/10.1093/hmg/ddt645DOI Listing

Publication Analysis

Top Keywords

x-linked adrenoleukodystrophy
8
long-chain fatty
8
peroxisomal abc
8
x-ald patients
8
main immune
8
peroxisomal β-oxidation
8
monocytes intermediate
8
intermediate cells
8
cells
7
x-ald
5

Similar Publications

Purpose: X-linked adrenoleukodystrophy (XALD) can affect the eyes. Existing therapies are hampered by early quantitative examination methods. This study used an optical coherence tomography angiography system (OCTA) to investigate retinal microvascular density and perfusion in XALD patients.

View Article and Find Full Text PDF

Our objectives are to report on the outcomes of adrenal insufficiency (AI) and cerebral ALD (cALD) in children diagnosed with X-linked adrenoleukodystrophy (ALD) identified by newborn screening (NBS) in Minnesota in the first 5 years following initiation of NBS in 02/2017. A retrospective chart review was conducted for children diagnosed with ALD via Minnesota NBS from 02/06/2017 through 02/06/2022. Data reviewed included newborn screening data, diagnostic very long chain fatty acid levels, ABCD1 molecular testing results, serial measurements of ACTH and cortisol, and serial brain MRI results.

View Article and Find Full Text PDF

Progression of Spinal Cord Disease in Adult Men With Adrenoleukodystrophy.

J Inherit Metab Dis

January 2025

Department of Neurology and Pediatric Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Center, Amsterdam, The Netherlands.

This study presents the longest systematic prospective follow-up of spinal cord disease in adult male ALD patients to date. Standardized yearly quantitative data collection included scoring of the EDSS, SSPROM, 6-min walking test (6MWT), urological and quality of life questionnaires and vibration sense of the hallux. Progression rates were compared between patients with mild (EDSS ≤ 2.

View Article and Find Full Text PDF

Altered lipid profile and reduced neuronal support in human induced pluripotent stem cell-derived astrocytes from adrenoleukodystrophy patients.

J Inherit Metab Dis

January 2025

Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder resulting from pathogenic variants in the ABCD1 gene that primarily affects the nervous system and is characterized by progressive axonal degeneration in the spinal cord and peripheral nerves and leukodystrophy. Dysfunction of peroxisomal very long-chain fatty acid (VLCFA) degradation has been implicated in ALD pathology, but the impact on astrocytes, which critically support neuronal function, remains poorly understood. Fibroblasts from four ALD patients were reprogrammed to generate human-induced pluripotent stem cells (hiPSC).

View Article and Find Full Text PDF

Adrenoleukodystrophy is a genetic metabolic disorder characterized by a heterogeneous phenotype. Its severe form, known as cerebral adrenoleukodystrophy, involves unpredictable cerebral damage and progressive central nervous system deterioration. This rare condition became famous because of a Hollywood movie in which the Italian parents of a child with the condition supposedly discovered a medication for treating the condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!