Endo-β-N-Acetylglucosaminidases (ENGases) are highly useful biocatalysts that can be used to synthetically access a wide variety of defined homogenous N-linked glycoconjugates in a convergent manner. The synthetic efficiency of a selection of family GH85 ENGases was investigated as the structure of the acceptor substrate was varied. Several different GlcNAc-asparagine acceptors were synthesised, and used in conjunction with penta- and decasaccharide oxazoline donors. Different enzymes showed different tolerances of modification of the GlcNAc acceptor. Whilst none tolerated modification of either the 4- or 6-hydroxyl, both Endo M and Endo D tolerated modification of OH-3. For Endo D the achievable synthetic efficiency was increased by a factor of three by the use a 3-O-benzyl protected acceptor. The presence of a fucose at position-3 was not tolerated by any of the enzymes assayed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3ob42104jDOI Listing

Publication Analysis

Top Keywords

synthetic efficiency
8
tolerated modification
8
endo-β-n-acetylglucosaminidase catalysed
4
catalysed glycosylation
4
glycosylation tolerance
4
tolerance enzymes
4
enzymes structural
4
structural variation
4
variation glycosyl
4
glycosyl amino
4

Similar Publications

Urinalysis, as a non-invasive and efficient diagnostic method, is very important but faces great challenges due to the complex compositions of urine and limited naturally occurring biomarkers for diseases. Herein, by leveraging the intrinsic absence of endogenous fluorinated interference, a strategy with the enzymatically activated assembly of synthetic fluorinated peptide for cholestatic liver injury (CLI) diagnosis and treatment through F nuclear magnetic resonance (NMR) urinalysis and efficient drug retention is developed. Specifically, alkaline phosphatase (ALP), overexpressed in the liver of CLI mice, triggers the assembly of fluorinated peptide, thus, directing the traffic and dynamic distribution of the synthetic biomarkers after administration, whereas CLI mice display much slower clearance of peptides through urine as compared with healthy counterparts.

View Article and Find Full Text PDF

Triune Engineering Approach for (+)-valencene Overproduction in Yarrowia lipolytica.

Biotechnol J

January 2025

Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.

The sesquiterpene (+)-valencene, with its flavor and diverse biological functions, holds promise for applications in the food, fragrance, and pharmaceutical industries. However, the low concentration in nature and high cost of extraction limit its application. This study aimed to construct a microbial cell factory to efficiently produce (+)-valencene.

View Article and Find Full Text PDF

3-Fluoroneuraminosyl fluorides are invaluable probes for studying the catalytic mechanism of sialidases (neuraminidases), and as sialidase inhibitors. Significantly, when a C-3 equatorial fluorine is installed on a C-4 functionalised N-acylneuraminic acid (Neu)-based template, the compounds are potent and selective inhibitors of both influenza and parainfluenza sialidases, and of virus replication. Typically, the reported syntheses of 3-fluoroneuraminosyl fluorides involve either an enzymatic or a chemical synthesis that have uncontrolled stereoselectivity in the introduction of fluorine at C-3 of Neu and consequently yield a mixture of C-3 ax and C-3 eq fluoro derivatives.

View Article and Find Full Text PDF

Introduction: The development of efficient and sustainable catalytic methodolo-gies has garnered considerable attention in contemporary organic synthesis.

Methods: Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs).

View Article and Find Full Text PDF

Noncovalent interactions are present in numerous synthetic and biological systems, playing an essential role in vital processes for life such as stabilization of proteins' structures or reversible binding in substrate-receptor complexes. Their study is relevant, but it presents challenges due to its inherent weak nature. In this context, molecular balances (MBs) are one of the most efficient physical organic chemistry tools to quantify noncovalent interactions, bringing beneficial knowledge regarding their nature and strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!